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Research Paper:
Blockade of Hypoxia: The Impact on Tumor Growth 
in an Experimental Tumor Model

Background: Tumor microenvironment is an active factor participating in immunoregulation, 
thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia 
as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-
1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the 
expression of tumor immunosuppression-related genes. 

Materials and Methods: In this study, we used a mouse 4T1 breast cancer model.

Results: Our obtained data revealed that in vivo administration of PX-478, an inhibitor of oxygen 
sensitive HIF-1α, reduced the expression of Forkhead box P3 (Foxp3) transcript, a molecule that is 
directly controlled by HIF-1. The level of vascular endothelial growth factor, another gene controlled 
by HIF-1, remained unchanged. The observed results were in correlation with delayed tumor growth 
in tumor-bearing mice.

Conclusion: Our findings indicate that the reduction in Foxp3 expression through HIF-1α inhibition 
using PX-478 may contribute to tumor regression.
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Introduction

ypoxia, a common characteristic of all solid 
tumors, provokes mechanisms involved in 
suppressing antitumor immunity and pro-
tects cancerous tissues [1-5]. The immuno-
regulatory effect of hypoxia is elicited by 

Hypoxia-Inducible Factor (HIF). HIF mediates adaptive 
transcriptional responses to hypoxia, involved in different 
cell biology aspects, including cell survival, glucose metab-
olism, angiogenesis, and invasion [6, 7]. HIF is a heterodi-
mer molecule consisting of constitutively expressed beta 
(HIF-1β) subunit and one of the three oxygen-regulated 
alpha subunits (HIF-1α, HIF-2α, or HIF-3α). In the absence 
of oxygen, alpha subunits are post-translationally stabilized 
and heterodimerized with HIF-1β, then be translocated into 
the nucleus and transactivate its target genes [8].

Hypoxia plays a critical role in immune regulation and 
resistance to therapy. Thus, targeting HIF-1 activity could 
be a potential immunotherapeutic approach for cancer 
therapy. Suppressing HIF-1 in animal models decreases 
tumorigenesis, and increases survival rate [9]. A growing 
number of medications have been introduced as anticancer 
agents that are HIF-1inhibitors [8, 10]. PX-478, [S-2-ami-
no-3-(4V-N,N,-bis[2-chloroethyl]amino)-phenyl propionic 
acid N-oxide dihydrochloride], is a small molecule that 
suppresses hypoxic and normoxic translations of HIF-1α, 
as well as HIF-1α transcriptional activity and Vascular En-
dothelial Growth Factor (VEGF) expression under hypoxic 
conditions, in various cancer cell lines [11, 12]. Moreover, 
hypoxia promotes Foxp3 expression and regulatory T-cell 
function through direct transcriptional activation of Foxp3 
mRNA by HIF-1α [13].

Given the impact of hypoxic stress on angiogenesis, tu-
mor progression and immune tolerance, hypoxia attracted 
particular attention in tumor immune biology. The present 
study investigated the effect of HIF-1α inhibition using PX-
478 on tumor growth in the mouse model of cancer, as well 
as its potential effect on VEGF and Foxp3 expression. 

Materials and Methods

Mice and cell lines

Six- to 8-week-old BALB/c and C57BL/6 female mice 
were obtained from the Laboratory Animal Center, Pas-
teur Institute of Iran. Animal protocols were approved by 
the Institutional Animal Care and Use Committee of Teh-
ran University of Medical Sciences. The 4T1 carcinoma 
and F10 melanoma cell lines which are of BALB/c and 
C57BL/6 origin, respectively, were cultured in complete 

media RPMI-1640 (Biosera, UK) supplemented with 100 
U/mL penicillin, 100 µg/mL streptomycin, 10 mmol/L L-
glutamine (Biosera, UK), as well as 10% heat-inactivated 
FBS (Gibco, Grand Island, USA), in a 5% CO2 humidified 
incubator at 37 ͦ C. Tumors were created by subcutaneously 
injecting 7×105 4T1 or 5×105 F10 tumor cells into the right 
flank of syngeneic mice, with tumor size (in mm2), assessed 
every 2 days thereafter.

PX-478 treatment

HIF-1α inhibitor, PX-478, was purchased from MedKoo 
Biosciences. For in vivo use, tumor-bearing mice were In-
traperitoneally (IP) administered 20, 40 or 60 mg/kg PX-
478 or normal saline in a total volume of 200 µL, 3 times 
a week for one week, beginning after tumors were palpable 
with an approximate size of ~25 mm2 in the area.

RNA isolation and real-time quantitative PCR

RNA was extracted from frozen tissues with Hybrid-R 
RNA purification kit (GeneAll Biotechnology, Korea). One 
microgram of RNA was reverse transcribed into comple-
mentary DNA (cDNA), using a QuantiTect Reverse Tran-
scription kit (Qiagen). cDNAs were quantified by real-time 
PCR using an SYBR Green Real-time PCR master mix 
(Primer design, UK), on an ABI 7500 detection system 
(Applied Biosystems, United States). The relative mRNA 
levels were determined using the ∆Ct method. The val-
ues were expressed relative to endogenous β-actin. The 
following PCR primers were used: HIF-1α forward, 5′- 
AGCTTCTGTTATGAGGCTCACC-3′; HIF-1α reverse, 
5′- TGACTTGATGTTCATCGTCCTC-3′ [14]; VEGF 
forward, 5′- GCGGAGAAAGCATTTGTTTG-3′; VEGF 
reverse, 5′-TCTTTCCGGTGAGAGGTCTG-3′; Foxp3 for-
ward, 5′-GCAGGGCAGCTAGGTATCTGTAG-3′; Foxp3 
reverse, 5′-TCGGAGATCCCCTTTGTCTTATC-3′; β-actin 
forward, 5′-GGTCATCACTATTGGCAACG-3′; and β-actin 
reverse, 5′-ACGGATGTCAACGTCACACT-3′.

Statistical analysis

Between-group comparisons were performed using 1-way 
Analysis of Variance (ANOVA), and Tukey’s test. Graph-
Pad Prism was used for graphs and statistical analysis. P 
values less than 0.05 were considered as significance.

Results

PX-478 administration interferes with HIF-1α and 
Foxp3 expression

PX-478 is a HIF-1α inhibitor currently being evaluated 
in phase I/II clinical trials. Previous studies indicated that 

H
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PX-478 administration inhibits HIF-1α expression and its 
downstream target gene, VEGF. The direct effect of HIF-1α 
on the induction of Foxp3 has also been indicated. To deter-
mine whether PX-478 involves VEGF and Foxp3 expres-
sion, PX-478 was IP administered in palpable tumors, at 
dosages of 20, 40, or 60 mg/kg every other day for a week. 
Treated animals were sacrificed 1 day after receiving the 
last dose of the drug, and tumors were excised. Then, the 
transcript levels of HIF-1α, FOXP3, and VEGF were mea-
sured via real-time RT-PCR. 

As shown in Figure 1, HIF-1α transcription significantly 
decreased in tumors obtained from 4T1 tumor-bearing mice 
that received 40 mg/kg PX-478. However, in the case of 
F10 tumors, HIF-1α expression, while not at a significant 
level, indicated a decreased expression at the dosages of 40 
and 60 mg/kg. These studies revealed that HIF-1α block-
ade diminished the tumoral expression of Foxp3 when the 
inhibitor was administrated at 40 mg/kg in breast cancer 
models. However, VEGF expression evaluated at mRNA 
level suggested no remarkable change in tumors. 

Kheshtchin N, et al. Hypoxia and Tumor Growth. Immunoregulation. 2019; 2(1):35-40.

Figure 1. Effect of PX-478 treatment on the expression of HIF-1α and its downstream genes 
Tumor-bearing mice were left untreated or they were given PX-478 (IP at 20, 40, or 60 mg/kg every other day for a week). Tu-
mors were excised one day after the final injection. Then, HIF-1α mRNA in both models, as well as VEGF and Foxp3 mRNA in 
breast carcinoma model was measured in tumors by real-time RT-PCR, calculated relative to housekeeping gene β-actin. Data 
were expressed as the mean±SEM for the three mice per group. *P<0.05 by 1-way ANOVA. 

Figure 2. Delay of tumor growth in mice treated with PX-478
Tumor size (mean±SEM) of mice in each treatment modality reported in mm2 followed till the end of the experiment (a. 4T1; 
and b. F10 model). *P<0.05 (ANOVA, n=3).
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PX-478 administration at 40 mg/kg promotes tumor 
regression in BALB/c mice

The effect of different dosages of PX-478 on tumor pro-
gression was investigated using subcutaneously implanted 
4T1 and F10 tumor cell grafts in syngeneic animals. As 
shown in Figure 2, untreated tumors in 4T1 tumor bearing-
mice displayed rapidly progressive growth, whereas tumors 
in animals treated with 20 and 60 mg/kg PX-478 grew more 
slowly. The growth of tumors in mice treated with 40 mg/
kg PX-478 significantly decreased, compared with the un-
treated group. PX-478 treatment in mice bearing F10 tu-
mors indicated no significant effects on tumor growth. 

Discussion

The hypoxia of solid tumors as a tumor microenvironment 
hallmark is strongly associated with malignant phenotypes 
and therapy resistance [15]. HIF-1, the master regulator 
of the cellular response to hypoxia, is targeted for cancer 
therapy. Due to the critical role of HIF-1 in cancer progres-
sion, there is interest in the discovery of medications that 
target this molecule [6, 16, 17]. PX-478 is a specific agent 
that suppresses HIF-1α levels under normoxic and hypoxic 
conditions in various cancer cell lines [11, 12]. 

During hypoxia, multiple anti-inflammatory mechanisms 
might be elicited via HIF-dependent transactivation, like 
VEGF induction that plays an important role in tumor an-
giogenesis and immune escape [18, 19]. Another example 
is the induction of extracellular adenosine pathway that 
contributes to Regulatory T cells (Treg) differentiation and 
function [20-22]. Another mechanism is the enhanced sup-
pressing effect of tumor Myeloid-Derived Suppressor Cells 
(MDSCs), that involves HIF-1α-mediated induction of 
PDL-1 on these cells [23]. Moreover, upon TCR activation, 
CD4+ T cells upregulate Foxp3 expression in a HIF-1α and 
Transforming Growth Factor (TGF)-β-dependent manner; 
thereby differentiate to Tregs. The differentiated Tregs dem-
onstrate defects in their inhibitory functions in the absence 
of HIF-1α [13].

The present study explored the effects of HIF-1α blockade 
by PX-478 on tumor growth, as well as the tumor expression 
of VEGF and Foxp3 genes. When used at 40 mg/kg, PX-
478 was particularly effective in the breast cancer model. 
This is because it led to a marked reduction in tumor growth 
in correlation with a significant decrease in HIF-1α mRNA. 
However, with no significant effect on HIF-1α expression, 
the drug was not effective on the F10 tumor model. This 
finding indicates that tumors induced by F10 cells might be 
resistant to HIF-1 inhibition, or the selected range of drug 
concentration is not effective on the tumors induced by this 

cell line. Prior research also reported that the effectiveness 
of PX-478 is positively correlated with HIF-1 expression in 
tumors [12]. The microenvironment of the melanoma or the 
administered drug dose might influence the effectiveness of 
PX-478 on HIF-1α inhibition. Moreover, original studies 
were performed using higher dosages of this drug. 

We also investigated the expression of VEGF and Foxp3 
genes that are directly controlled by HIF-1α. The treatment of 
BALB/c mice with 40 mg/kg PX-478 significantly reduced 
Foxp3 expression. However, an unexpected observation was 
that PX-478 indicated no significant effect on VEGF expres-
sion in tumor tissues obtained from the treated mice. Various 
studies also emphasized the role of HIF-1α in tumor progres-
sion and angiogenesis by macrophages. Doedens et al. indi-
cated that VEGF is a HIF-1α regulated gene [24]. 

The targeted deletion of HIF-1α in myeloid cells failed to 
change VEGF-A levels or tumor vasculature. The tumors, 
however, exhibited reduced progression attributed to their 
escape from immune suppression. The reduced expression 
of tumoral Foxp3 observed in the present study might be 
an indication of impairments in the number of Treg cells or 
their function. However, another study reported that HIF-1α 
promotes Foxp3 degradation in the proteasome [25], em-
phasizing the determinant role of different microenviron-
ments in the effects of HIF-1 on Foxp3, and Treg function. 
The precise effect of hypoxia on Tregs in the tumor micro-
environment remains largely unexplored.

Our study revealed that HIF-1α inhibition using PX-478 
is highly effective on the mouse models of breast cancer. 
PX-478 treatment significantly reduced Foxp3 expression 
and decreased tumor growth in a dose-dependent manner 
in the breast carcinoma model, when given as monotherapy 
for just 3 days. 
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