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Research Paper
Expression of miR-106a-5p, miR-106b-5p, and 
TGFβ1I1 in Peripheral Blood Mononuclear Cells 
(PBMCs) of Chemical Veterans Exposed to Sulfur 
Mustard With Long-term Pulmonary Complications

Background: Sulfur mustard as a chemical warfare agent causes short and long-term pulmonary 
complications in its victims. MicroRNAs are known to act as remarkable regulators of biological 
pathways, monitoring, and treatment of diseases including respiratory problems. In this study, 
we investigated the expression of miR-106a-5p and miR-106b-5p, two regulators of TGF-β 
signaling, as well as their target molecule, TGFβ1I1, in peripheral blood mononuclear cells from 
SM-exposed individuals.

Materials and Methods: A total of 70 veterans with SM-induced pulmonary complications were 
examined and compared to 35 gender and age-matched healthy controls. After clinical examination 
and pulmonary function tests, the severity of pulmonary complications was classified. Total 
RNA was extracted from PBMCs and the purity of extracted RNA samples was evaluated by a 
NanoDrop 2000. The miR-106a-5p, miR-106b-5p, and TGFβ1I1 expression levels were measured 
by real-time RT-PCR.

Results: The miR-106a-5p expression levels were significantly increased in both mild (P=0.015) 
and severe groups compared with the control group. The miR-106b-5p expression levels were 
considerably elevated in the severe group TGFβ1I1 expression levels were notably reduced in the 
severe group compared with the control group. Although, a slight decrease in TGFβ1I1 expression 
levels was observed in the mild group compared with the control.

Conclusion: Our results indicate that exposure to sulfur mustard affects the expression of miR-106a-
5p, miR-106b-5p, and their target gene, TGFβ1I1, in peripheral blood mononuclear cells. Considering 
the role of TGFβ1I1 in the regulation of TGF-β signaling, the mentioned changes might point to a 
potential mechanism by which SM exposure causes chronic pulmonary complications. In a ROC 
analysis, miR-106a-5p and miR-106b-5p potentially turned out to be a suitable diagnostic biomarker 
in the mild and severe categories of patients. Although, miR-106a-5p could be considered a better 
biomarker than miR-106b-5p.
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1. Introduction 

ulfur mustard (SM) is an alkylating chemi-
cal warfare agent with carcinogenic, mu-
tagenic, and cytotoxic properties that was 
used during the Iran-Iraq war between 
1983 and 1988 [1-3]. The pulmonary sys-

tem, skin, and eyes are the major targets for the early and 
late toxic effects of SM [4]. The dosage and duration of 
mustard gas exposure are directly related to the severity 
of pulmonary complications [5, 6]. Respiratory compli-
cations are the most common delay problem, while skin 
and eye lesions diminish or remain constant over time [6, 
7]. The most common delayed pulmonary complications 
following exposure to SM include asthma, chronic ob-
structive pulmonary disease (COPD), chronic bronchi-
tis, bronchiolitis obliterans, obstructive bronchitis, and 
pulmonary fibrosis [8-10]. Although the role of chronic 
inflammatory factors, changes in cytokines, free radi-
cals, destructive effects on enzymes and mitochondria of 
cells, as well as the cessation of cell proliferation have 
been evaluated, the exact immunopathological mecha-
nisms of acute and chronic effects of mustard gas are still 
unknown [11, 12]. 

Transforming growth factor β (TGF-β) is a cytokine 
that is widely involved in many biological processes 
such as differentiation, cell proliferation, inflammation, 
tissue homeostasis, apoptosis, and angiogenesis [13, 14]. 
It is clear that cells such as neutrophils, alveolar epithe-
lial cells, alveolar macrophages, endothelial cells, NKT, 
fibroblasts, myofibroblasts, and Tregs are responsible for 
the production of TGF-β in the lung and also Tregs and 
TGF-β (three TGF-β isoforms include TGFβ1, TGFβ2, 
and TGFβ3) have an important character in the devel-
opment of lung-related immune disorders like asthma, 
allergies, and COPD [15]. 

TGF-β signaling is carried out by TGFβR1 and 
TGFβR2, which are its membrane receptors and are 
part of serine/threonine kinase receptors. The altered 
expression of proteins involved in the TGF-β signaling 
pathway is associated with some main diseases includ-
ing cancer, inflammation, and fibrosis [16]. TGF-β in-
tracellular signaling pathways are regulated by several 
intracellular mediators and regulators such as SMADs 
and TGFβ1I1 [17]. The TGFβ1I1 protein, which is also 
known as HIC-5 or ARA55 , has four LIM motifs and is 
expressed in more organs such as the lung and spleen. 
This protein induces an inhibitory signal by binding its 
LIM3 domain to the MH2 domain in Smad3. TGFβ1I1 
also acts as a TGF-β signaling pathway activator through 
physical interaction and inhibitor of Smad7 [18, 19]. 

MicroRNAs (miRNAs) are small, non-coding RNAs that 
control gene expression by destroying target mRNAs or 
suppressing protein translation [20]. These RNAs are in-
volved in regulating various physiological and pathologi-
cal processes including cell cycle, aging, proliferation, and 
apoptosis [21, 22]. Due to the close relationship between 
their aberrant expression and various diseases, as well as 
their high preservation and stability in clinical specimens, 
miRNAs are considered novel and remarkable biomarkers 
for the diagnosis and treatment of various diseases [22].

The miR-106a-5p and miR-106b-5p are located on the 
long arm of chromosome X and chromosome 7, respec-
tively. The miR-106 plays key roles in a wide range of 
diseases including various types of cancer especially lung 
cancer, COPD, asthma, fibrosis, and cardiovascular [23-
27]. As well, post-transcriptional regulation of miR-106 
is performed by several factors including TGF-β; based 
on evidence from mirdb and targetscan databases, the 
miR-106a-5p and miR-106b-5p target the 3'UTR region 
of the TGFβ1I1 gene and, by suppressing its expres-
sion, affect the function of the TGF-β signaling pathway 
[28-30]. Some papers found the essential roles of miR-
106a-5p and miR-106b-5p in development of the asthma, 
COPD as well as respiratory complications [31, 32].

This study aimed to evaluate expression levels of miR-
106a-5p, miR-106b-5p, and TGFβ1I1 in PBMCs from 
chemical warfare victims who have developed chronic 
pulmonary complications following exposure to SM. 
The expression analyses, potential correlations between 
miRNAs, and TGFβ1I1 levels were evaluated. 

2. Materials and Methods 

Sample collection 

In this case-control study, 70 SM-exposed individuals 
based on the medical documents verified by the Medical 
Committee of the Foundation of Martyr and Veterans Af-
fairs as well as GOLD 2018 classification, and 35 healthy 
individuals without any history of SM exposure, were re-
cruited. All patient samples were obtained from people who 
were injured in the chemical bombing of Sardasht on June 
28, 1987. Individuals in the patient group were classified 
into mild and severe groups based on the initial symptoms 
of SM. All groups were male, 30 to 60 years old, and non-
smokers with no history of alcoholism who had no underly-
ing or inflammatory lung disease interfering with the study. 
According to documents, all patients suffered from long-
term pulmonary complications. Chronic cough, sputum, 
hemoptysis, and dyspnea were considered common pulmo-
nary symptoms of SM exposure. 
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The mild group (n=35) included exposed individuals 
who had no early symptoms at the time of exposure. The 
severe group (n=35) included individuals who experi-
enced early symptoms immediately after the exposure 
and were hospitalized accordingly [33]. 

Isolation of peripheral blood mononuclear cells 
(PBMCs)

PBMCs were purified using the Ficoll-Paque gradient 
method; 10 mL of peripheral blood was collected from 
patients and healthy individuals and stored at 4°C to 
minimize cell activation. Briefly, 4 mL of ficoll-Paque 
gradient was pipetted into two 15 mL Falcon tubes. Then 
K2EDTA-blood samples were layered over the Ficoll- 
Paque gradient (10 mL/tube) carefully. The tubes were 
centrifuged for 20 min at 2800 rpm at 7°C, then the layer 
containing PBMCs was carefully harvested and then 
washed twice with PBS, after that the cells were resus-
pended in PBS and were counted manually using a Neu-
bauer chamber (Ningbo Finer Medical Instruments Co., 
Ltd.) and light microscope (magnification×100) [34].

RNAe extraction and cDNA synthesis

Total RNA was extracted from PBMC samples us-
ing Hybrid-RTM miRNA Kit (Gene All, South Korea) 
following the manufacturer’s protocol. The purity and 
concentration of extracted RNA samples were evalu-
ated by a NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific, USA). First-strand cDNA synthesis 
was performed from 1 μg total RNA using BON high 
sensitivity microRNA first strand cDNA synthesis Kit 
(Bon-yakhteh) for microRNA analyses and TAKARA 
kit for gene expression analyses, according to the manu-
facturer’s instructions.

Real-time RT-PCR

miRNAs (miR-160a-5p and miR-160b-5p) and their 
predicted target levels were measured by real-time re-
verse transcription–PCR using BON- high-specificity 
microRNA QPCR master mix (Bon-yakhteh, IRAN) 
on applied biosystems StepOnePlus system. MicroRNA 
expression data were normalized against SNORD 47 
expression levels, and also the expression of the other 
genes was normalized against β-actin mRNA levels 
(Table 1).

Statistical analysis

The normality of the data was assessed by the Kol-
mogorov-Smirnov and D'Agostino-Pearson tests. Due to 
the abnormal distribution of the data, the Mann-Whitney 
and Kruskal–Wallis tests were used to compare the ex-
pression level of the genes. Furthermore, the Spearman 
correlation coefficients (r) were used to determine a 
potential correlation between TGFβ1I1 expression lev-
els and those of miR-106a-5p and miR-106b-5p. The 
P<0.05 was presumed as statistically significant. As 
well, GraphPad Prism software version 9 was used for 
all of the statistical analyses and graph creation. 

The receiver-operating characteristic (ROC) curve 
analysis was employed to determine whether the expres-
sion of miR-106a-5p and miR-106b-5p has the sensitiv-
ity and specificity to discriminate between cases and 
controls.

3. Results 

In the current study, 35 healthy individuals were studied 
in a control group, 35 in a mild group, and 35 in a severe 
group. The average age of the groups was 46.71±7.36, 
44.40±9.14, and 47.77±8.2, respectively, and there was 
no significant difference between them. 

Table 1. β-actin and TGFβ1I1 genes designed primers sequences to evaluate mRNA expression of TGFβ1I1 in sulfur mustard 
–exposed lung

Sequence (5`→3`)Primers

CCCTTCGGAGATGAGGGTTTCForward
TGFβ1I1‡

AAGTGGTTCTCGCACAACGGReverse

236Product length

AGATCAAGATCATTGCTCCTCCTGForward
β-actin

TGTCACCTTCACCGTTCCAGReverse

318Product length

‡ TGFβ1I1: Transforming growth factor Beta 1 induced transcript 1.
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Real-time PCR was used to determine TGFβ1I1 gene 
expression levels. Data were normalized to β-actin as the 
housekeeping gene. After statistical evaluation, it was 
demonstrated that TGFβ1I1 expression levels decreased 
in both mild and severe groups and were significant in 
the severe group (P<0.01) (Figure 1) (Table 2).

The expression level of miR-106a-5p was considerably 
increased in the mild (P<0.05) and severe groups (P<0.01) 
compared to the control one (Figure 2) (Table 3).

Also the miR-106b-5p decreased in the mild group and 
increased significantly in the severe one (P<0.05) (Fig-
ure 2) (Table 3). Data were normalized to SNORD47 
levels.

There was a significant correlation between the expres-
sion of TGFβ1I1 and miR-106a-5p and also miR-106b-
5p in either SM-exposed individuals or control groups 
(Figure 3). Details are shown in Table 4.

Association of miR-106a-5p and miR-106b-5p ex-
pression with patients’ clinical features

ROC curve analysis was used to evaluate the sensitiv-
ity and specificity of miR-106a-5p and miR-106b-5p ex-
pression levels in discriminating subjects with mustard 
lung from the control group. According to ROC curve 
analysis, miR-106a-5p was in the mild group; area un-
der the curve (AUC)±SE 0.918±0.033, P<0.0001, and in 
the severe group (AUC±SE 0.995±0.005, P<0.0001), as 
well as miR-106b-5p was in the mild group (AUC±SE 

Table 2. Differential expression of TGFβ1I1 mRNA gene in control, mild and severe groups

Gene Control Mild Severe

TGFβ1I1†

Median 1.12 0.905 0.28

Q1 0.795 0.55 0.155

Q3 1.415 1.183 0.44

Mean±SD 1.092±0.418 0.925±0.425 0.463±0.4646

P - - <0.01

† TGFβ1I1: Transforming growth factor Beta 1 induced transcript 1.

Figure 1. TGFβ1I1 mRNA expression level in SM-exposed and healthy controls. The expression of the TGFβ1l1 gene was 
measured in PBMCs by Real-time RT-PCR. The level of TGFβ1I1 was decreased in both mild and severe groups respectively. 
Data are shown as Mean±SD. Number of samples in each group=35, **P<0.01, Kruskal–Wallis tests.
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Figure 2. miR-106a-5p and miR-106b-5p mRNA expression levels in SM-exposed and healthy controls. Expression of miR-
106a-5p and miR-106b-5p genes were measured in PBMCs by Real-time RT-PCR. (A) The level of miR-106a-5p was increased 
in both mild and severe groups. (B) the expression level of miR-106b-5p was decreased in the mild and increased in the severe 
group. Data are shown as Mean±SD. Number of samples in each group=35, *P<0.05, **P<0.01, Kruskal–Wallis tests.

Table 3. Differential expression of miR-106a-5p and miR-106b-5p genes in control, mild, and severe groups

Gene Control Mild Severe

miR-106a-5p

Median 0.95 2.02 3.2

Q1 0.79 1.66 2.77

Q3 1.26 2.37 3.62

Mean±SD 1.086±0.475 2.02±0.447 3.2±0.5147

P - <0.05 <0.01

miR-106b-5p

Median 1.07 0.85 1.99

Q1 0.75 0.58 1.64

Q3 1.38 1.11 2.29

Mean±SD 1.067±0.385 0.898±0.416 1.959±0.409

P - - <0.05
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0.645±0.066, P<0.05) and in the severe group (AUC±SE 
0.940±0.025, P<0.0001). A high AUC indicates that the 
studied test could distinguish between the absence and 
presence of the disease in question (Figure 4).

4. Discussion

One of the most commonly reported complications is 
respiratory problems in SM-exposed individuals [35]. 
SM can lead to pulmonary issues such as bronchiolitis 
obliterans, COPD, asthma, and pulmonary fibrosis. 

Recently, altered expression of TGF-β in the tissue of 
subjects exposed to SM has been investigated in several 
studies. However, some other studies reported that TGF-β 

expression was increased in tissue samples exposed to 
SM [36, 37]. TGF-β, as a remarkable character in causing 
chronic pulmonary complications in SM-exposed veterans, 
is mediated in the signaling pathway by TGFβ1I1. Actually, 
by inhibiting SMAD7, TGFβ1I1 increases the activity of 
the TGF-β signaling pathway [19]. Also, another study by 
Zandvoort et al. reported that SMAD7 gene expression is 
increased in COPD patients after stimulation with TGF-β 
[38]. Despite extensive research, we have not found any 
studies on the expression of TGFβ1I1 in SM-exposed in-
dividuals with COPD as well as asthma. Another research 
team, Cui et al., reported that hic-5 is essential for myofi-
broblast differentiation [35, 39] and Lei et al. showed that 
hic-5 expression was increased in hepatic fibrosis in mice 
and humans [40].

Figure 3. Correlation between the expression TGFβ1I1 and miR-106a-5p and also miR-106b-5p. The expression of miR- 106a-5p 
has more effect on inhibiting and reducing the expression of the TGFβ1I1 gene.

Table 4. Correlation between miRNAs and TGFβ1I1 genes expression

Correlation P

miR-106a-5p

Control Spearman r 0.2510 >0.05

Mild Pearson r -0.2157 >0.05

Severe Spearman r -0.1311 >0.05

miR-106b-5p

Control Pearson r 0.1635 >0.05

Mild Spearman r 0.07614 >0.05

Severe Pearson r -0.06382 >0.05 

Association of miR-106a-5p and miR-106b-5p expression with patients’ clinical features.
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The data of this study showed that the expression level 
of the TGFβ1I1 gene was significantly decreased in the 
group of patients with severe symptoms compared to the 
control group.

TGF-β signaling pathway plays a key role in cell prolif-
eration, differentiation, development, senescence, apop-
tosis, and, inflammation. Probably, the main cause of 
inflammation in patients with pulmonary complications 
exposed to SM is due to the downregulation of TGF-β, 
which is considered the main anti-inflammatory cyto-
kine released during the wound healing process [41, 42]. 
The result of the present study can justify the suppressed 
TGF-β signaling pathway in war veterans exposed to SM 
who have severe inflammation with skin lesions. Also, 
the obtained result is in complete agreement with the pre-
viously published works in animal models [42-44].

Our gene expression studies showed significantly in-
creased levels of miR-106a-5p in both mild and severe 
groups and miR-106b-5p isoform in the severe group. In 
another study, Sharma et al. reported that the knockdown 
of mmu-miR-106a in an allergic murine model reduces 
the respiratory complications of asthma. In other words, 
in asthma, the expression of miR-106a increases with the 
severity of the disease and can be a marker for assessing 
its disease status [26].

Consistent with our study, Wang et al showed the ex-
pression of miR-106b-5p in peripheral blood leukocytes 
was impressively increased. It seems that miR-106b-
5p is a possible marker for COPD severity [32]. In this 

part, unlike our findings, miR-106b-5p was significantly 
down-regulated in the plasma of COPD patients com-
pared with healthy individuals [25]. 

In addition, Kung et al. perceived miR-106a and miR-
106b elevate in LUAD, and the inhibition of one or both 
of these miRNAs may provide a strategy for the treat-
ment of advanced disease [45].

Previous studies have denoted that TGF-β gene expres-
sion changes in various lung diseases and SM-exposed 
patients [8]. 

As our result showed, a significant increase of miR-
106a-5p and miR-106b-5p was significantly related to 
the down-regulation of TGFβ1I1 in PBMC exposed to 
SM. So, it seems that miR-106a-5p and miR-106b-5p 
play an important role in inhibiting the TGF-β signaling 
pathway leading to exacerbation of the inflammatory re-
sponse and chronic pulmonary complications. 

 In this study, the correlation between TGFβ1I1 ex-
pression levels with miR-106a-5p and miR-106b-5p 
expression was evaluated and results revealed a signifi-
cant correlation between TGFβ1I1 with miR-106-a-5p 
and miR-106b-5p. It should be noted that miR-106a-5p 
had a more significant association with TGFβ1I1 than 
miR-106b-5p. It could be said that the increase in the 
expression of the miR-106a-5p and miR-106b-5p by in-
hibiting the TGFβ1I1, suppresses the TGF-β signaling 
pathway and exacerbate the chronic pulmonary compli-
cations in SM-exposed individuals. Both miR-106a-5p 

Figure 4. Receiver operating characteristic (ROC) curve analysis determined the good sensitivity and specificity for miR-106a-
5p and miR-106b-5p expression levels in discriminating cases from controls. (A) In the mild group the calculated area under 
the curve (AUC) was 0.918 and in the severe group was 0.995 for miR-106a-5p. (B) AUC for miR-106b-5p in the mild group 
was 0.645 and in the severe group was 0.940 demonstrating the suitability of miR-106a-5p and miR-106b-5p to correctly clas-
sify cases and controls. However, miR-106a-5p has a more acceptable performance and could be considered a better potential 
biomarker. The x and y axis denote the values of the performance parameters 'specificity' and 'sensitivity' over the full range 
from 0 to 1.
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and miR-106b-5p are considered potentially acceptable 
biomarkers for distinguishing between the patient and 
control groups. With the description, it can be said that 
miR-106a-5p is a more discriminating and outstanding 
biomarker. 

Data from this gene expression analysis point to the po-
tential involvement of miR-106a-5p and miR-106b-5p 
in the inhibition of the TGFβ1I1 molecule in pulmonary 
complications that occur after exposure to SM.

It is suggested to use people who have suffered from 
chronic pulmonary complications for reasons other than 
exposure to mustard gas in future studies, and compare 
it with the results of studies of COPD complications 
caused by exposure to mustard gas in chemical victims.

5. Conclusion

The results of this study show that miR-106 isoforms 
are up-regulated in SM-exposed PBMC patients. In-
creased expression of these miRNAs may play a role in 
inflammation by interfering with the TGF-β signaling 
pathway. The miRNAs can be used as a new approach 
in the diagnosis and treatment of patients exposed to SM 
due to their high stability in biological samples as well as 
their successful use in clinical trials.
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