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Review Paper
Interaction of Allostatic Load With Immune, 
Inflammatory, and Coagulation Systems 

Dysregulation of the immune system, as well as the endocrine, metabolic, and coagulation systems, 
has been linked to stress. The type of stressor (acute or chronic) may have a differential effect on 
immune function, with brief acute stress enhancing some parameters of immunity and chronic stress 
having a negative effect on many parameters of immune function. The hypothalamic-pituitary-
adrenal axis and autonomic (sympathetic and parasympathetic) nervous systems mediate stress and 
immune functions. Exposure to frequent stressors can lead to repeated physiological arousal, failure 
to adapt to repeated stressors, failure to terminate the stress response after the stressor has ceased, and 
inadequate allostatic load to the stressor. The allostatic load provides an overall and body system-
specific mechanistic relationship between stressor exposures and health outcomes that may explain 
minority health disparities. Multiple physiological systems interact at differing levels of activity in this 
condition. Principally, the severity of allostatic load is determined by using biomarkers of numerous 
body systems that depict physiological disturbances. There is a substantial connection between stress, 
immune function, inflammation, and coagulation. Consequently, immune/inflammatory/coagulation 
biomarkers may play crucial roles in the calculation of allostatic load, and the recommendation of 
additional biomarkers may improve the estimation accuracy of allostatic load.
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1. Introduction

everal studies have assessed the link be-
tween stress and immunological function 
in recent decades [1-4]. Chronic stress has 
been related to a dysregulation of the im-
mune and neuroendocrine systems. This 

dysregulation has been shown to have a role in the de-
velopment of different diseases. Immune dysregulation 
and chronic inflammation are also linked to an increased 
risk of premature death from any cause [2, 5-7].

There are several mechanisms, by which stress can af-
fect the immune system. Both the hypothalamic-pituitary-
adrenal (HPA) axis and the sympathetic nervous system 
(SNS; adrenergic activation) are involved in the immune 
responses. Depending on the nature of the stress, the body’s 
response to it may be different, or it may even go wrong. 
Short-term or acute stress causes a widespread reorganiza-
tion of the immune system. Immune cells (such as lympho-
cytes) normally reside in the marginated pool, spleen, bone 
marrow, and lymph nodes; however, when acute stressors 
occur, stress hormones initiate a cascade of events and in-
duce the trafficking of immune cells (e.g. lymphocytes) out 
of these compartments and into the blood, where they even-
tually reside in target organs where an individual is most 
likely to be injured. The result is a boost in immune cell 
defenses against infection [8-10].

Chronic stressors are among the most dangerous envi-
ronmental hazards because of their long-lasting impact on 
mental, emotional, and physical health. Stress causes not 
only mental and behavioral shifts but also physical modifi-
cations [11, 12]. When the HPA system is activated for an 
extended period, it might throw off the body’s ability to reg-
ulate other systems, such as the immune system. Individu-
als who are under chronic stress are more likely to have a 
cold and reduced immunological response to immunization 
and take longer to recover following standardized wound 
inductions [1, 2]. They also experience low-grade, nonspe-
cific inflammation. This increase in inflammation is likely 
due to decreased anti-inflammatory feedback [13]. When 
the immunological response is no longer necessary, the 
HPA axis acts as a negative feedback mechanism to dampen 
it. Increases (rather than decreases) in inflammation are re-
lated to the HPA axis; however, glucocorticoid resistance or 
inadequate glucocorticoid signaling may emerge in chronic 
stress settings. If the HPA axis is overactive, the adrenal 
gland may pump out so much cortisol that cell receptors 
that normally detect cortisol and turn off become resistant 
and do not “hear” the cortisol as well (i.e. they are less sen-
sitive). This would result in a decrease in anti-inflammatory 
feedback [14-16].

In contrast to acute activation of the immune system in 
response to stress, which is homeostatically regulated by 
neuroendocrine mechanisms, chronic activation of the 
immune system due to continuous stress exposure can 
lead to an allostatic load with an inflammatory diathesis 
that is involved in the pathophysiology of various disor-
ders. The term “allostatic load” is used to describe the 
overall effect of prolonged emotional and psychological 
strain. Several physiological systems must coordinate 
their efforts, each operating at a different intensity level 
[17]. Allostatic overload occurs when an individual is 
confronted with environmental demands that are greater 
than their reserves. Adrenal corticosteroids, in conjunc-
tion with catecholamines, help maintain homeostasis in 
the immune system by directing immune cell “traffick-
ing” to sites where they will be most effective in fighting 
infection or other threats and by regulating the expres-
sion of cytokines and chemokines, the immune system’s 
hormones [18]. Allostatic load, which includes immuno-
suppressive effects, occurs with chronic over-activity of 
these same mediators when they are secreted continu-
ously or not shut off appropriately [18, 19]. 

This study aimed to review the relationships between 
stress, immunity, inflammation, and coagulation, and 
their effects on allostatic load. This review may show the 
importance of using more immune, inflammatory, and 
coagulation markers in allostatic load score calculations.

Acute stress and immunity

Stress has been conceptualized as a constellation of 
events, commencing with a stressor, which triggers a 
brain reaction, which in turn activates a physiological or 
biological stress response to enable the body to deal with 
the threat or opportunity. The body prepares for potential 
injury in response to acute stress by rapidly activating 
the sympathetic nervous system, which transmits effer-
ent projections to the bone marrow and lymphoid tis-
sues [20]. The innate immune response provides rapid 
defense against infections or tissue damage. Granulo-
cytes, monocytes, macrophages, and natural killer (NK) 
cells mediate this innate immunity by emitting inflam-
matory molecules (such as cytokines and reactive oxy-
gen species) and phagocytosing pathogens [21]. Innate 
immunity responds rapidly to acute stress, whereas ac-
quired immunity can take days to develop a response to 
a particular disease [22]. Different subsets of lympho-
cytes, each with antigen-specific receptor sites, mediate 
the development of acquired immunity. When the body 
detects stress, the sympathetic-adrenal-medullary axis 
secretes adrenaline and noradrenaline, which activate 
monocytes, macrophages, and lymphocytes through 
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beta-adrenergic receptors [23]. Signaling via adrenaline 
and noradrenaline induces rapid changes in the abso-
lute quantity and percentage of circulating leukocytes 
that serve to transport immune cells to lesion sites [24]. 
The redistribution of leukocytes within immune system 
compartments occurs simultaneously, with an increase 
in lymphocytes and monocytes in the blood followed 
by a decrease as these cells enter organ compartments, 
including the epidermis, lungs, and lymph nodes as the 
sites for pathogen infiltration. There is an increase in the 
expression of pro-inflammatory genes, such as tumor 
necrosis factor (TNF), interferon-gamma (IFNϒ), and 
interleukins 1 β (IL-1β) and 6 (IL-6) at the site of this 
acute stress-induced redistribution of immune cells [25]. 
NF-B, a mediator of the effects of acute stress on gene 
expression, increases the production of pro-inflammato-
ry cytokines from mononuclear cells and enhances its 
activity. Acute stress can increase noradrenaline levels, 
which can then activate NF-B and lead to the release of 
IL-6 [25, 26]. In turn, the released cytokines enter the 
brain through permeable regions of the blood-brain bar-
rier, active transport molecules, and afferent nerve fibers, 
which transmit information through the nucleus tractus 
solitarius. Environmental stress induces the withdrawal 
of inhibitory motor vagal input, as well as the release of 
acetylcholine, which binds to the nicotinic acetylcholine 
receptor. In response to stress, aldosterone is secreted, 

and by acting on mineralocorticoid receptors [16], it 
inhibits the activity of neutrophils, helper T cells, and 
natural killer (NK) cells. In addition, the secretion of the 
adrenaline and noradrenaline hormones will occur at this 
time. In response to stress, the adrenal cortex produces 
and secretes cortisol, which modulates the distribution 
and activity of immune cells via glucocorticoid recep-
tors on immune cells. At the level of the glucocorticoid 
receptor, negative feedback mechanisms decrease the 
levels of NF-B and the production of pro-inflammatory 
cytokines. This restores homeostasis and allows the im-
mune system to respond to the acute stress-induced re-
lease of glucocorticoids [27-29]. 

Chronic stress and immunity

During chronic stress, stressors can stimulate the para-
ventricular nucleus (PVN) to produce corticotropin-re-
leasing hormone (CRH), which activates the HPA axis. 
CRH stimulates the secretion of adrenocorticotropic 
hormone (ACTH), which in turn stimulates the secretion 
of glucocorticoids, particularly cortisol. Cortisol exerts 
significant immunosuppressive effects. 

Chronic stress inhibits glucocorticoid-mediated nega-
tive feedback regulation of immune activation, thereby 
promoting allostasis and increasing systemic inflam-

Figure 1. Schematic view of the stress effects in physiologic systems and their influence on the allostatic load
Note: The brain is a principal organ that responds to stress. The main function of allostasis mediators is to provide adaptation. 
However, overuse and/or dysregulation among the allostasis mediators causes allostatic load (or overload) and exacerbates 
the disease processes.
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mation. Due to glucocorticoid resistance, chronic stress 
lessens HPA axis negative feedback. Glucocorticoid 
resistance may be caused by stress-induced epigenetic 
modifications of molecules that regulate the glucocorti-
coid receptor and cytokine-induced receptor inhibition. 
Hypercortisolemia and immune system activation as a 
result of glucocorticoid resistance can elevate pro-in-
flammatory cytokine levels and pathogen-induced dis-
ease [17, 30-32].

Poor social status modifies the immune gene expres-
sion patterns of natural killer (NK) cells, helper T cells, 
B cells, and cytotoxic T cells to increase lymphocyte 
proliferation, innate immune responses, and cytokine re-
sponses [33]. Resting pro-inflammatory gene expression 
is most affected by social stress in NK and helper T cells 
[34, 35]. Prolonged stress modifies the chromatin struc-
ture and glucocorticoid responsiveness of DNA. How-
ever, these findings suggest that chronic stress exposure 
may generate pro-inflammatory states that contribute to 

stress-related psychopathology and other health issues, 
such as chronic low-grade inflammation, delayed wound 
healing, poor vaccine responses, and increased suscepti-
bility to infectious diseases [36].

Stress and allostatic load

Allostatic load was first proposed in 1993, and is de-
fined as the “cost of chronic exposure to fluctuating or 
heightened neural and neuroendocrine responses.” The 
individual’s reaction to what they consider to be ex-
tremely severe environmental situations over an extend-
ed period of time triggers these reactions. It derives from 
allostasis, the idea that an organism can achieve stability 
through change, and the premise that a healthy body re-
quires regular modifications to its internal physiological 
environment [37, 38]. 

Figure 2. Physiologic systems and related parameters involved in allostatic load estimation
A1C: Hemoglobin A1c; ACT: Alpha-1-antichymotrypsin; ALT: Alanine transaminase; AP: Alkaline phosphatase; Apo A1, B: 
Apolipoprotein A1 & B; Asthma D: Asthma diagnosis; AST: Aspartate aminotransferase; B cell F: β-cell functioning; BMI: Body 
mass index; BUN: Blood urea nitrogen; COD: Cytomegalovirus optical density; CRP: C-reactive protein; DHEA-S: Dehydro-
epiandrosterone-sulfate; DBP: Diastolic blood pressure; EBV-ab: Epstein-Barr virus antibodies; GFR: Glomerular filtration rate; 
GGT: Υ-glutamyl Transferase; HDL: High-density lipoprotein cholesterol; HDL/C: Total cholesterol to HDL ratio; Herpes-ab: 
Herpes antibody; HRflex: Cardiovascular physical fitness; ICAM-1: Intercellular adhesion molecule 1; IGR: Insulin–glucose 
ratio; IL-6: Interleukin-6; IGF-1: Insulin-like growth factor-1; IR: Insulin resistance; LDL: Low-density lipoprotein; PAI-1: Plas-
minogen activator inhibitor 1 antigen; PMFV: Peak menstrual flow volume; PR: Pressor response; Peak: Peak expiratory flow; 
SBP: Systolic blood pressure; T/AIII: Thrombin/antithrombin III complex; TNF-α: Tumor necrosis factor-alpha; t-PA: Tissue-
type plasminogen activator antigen; Visf: Visfatin; vWF: von Willebrand factor.
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Allostatic load is a term used to describe the cumu-
lative effect of daily experiences, including subtle and 
long standing life events as well as major challenges, on 
a person’s physiology, including but not limited to poor 
sleep and circadian disruption, lack of exercise, smoking, 
alcohol consumption, and an unhealthy diet [39]. When 
an individual’s coping mechanisms are overwhelmed by 
their surroundings, a condition known as allostatic over-
load sets in [40]. This is an extremely stressful state, in 
which the body’s stress response systems are perpetually 
activated and buffering elements are insufficient [40]. 
Exposure to frequent stressors can establish a state of 
chronic stress and repeated physiological arousal, fail-
ure to adapt to repeated stressors, failure to terminate the 
stress response after the stressor has ceased, and insuffi-
cient allostatic response to the stressor can all lead to al-
lostatic load/overload [41]. In response to environmental 
stimuli, several physiological systems interact at varying 
levels of activity. Both the nervous and immune systems 
help the body to persevere against hardship [42]. The 
hypothalamic-pituitary-adrenal axis has been implicated 
in the etiology of allostasis [43]. Brain structure and 
neurochemical activity are affected by both hereditary 
and non-genetic factors. Immune system modifications 
(such as leukocytes, cytokines, and inflammation), both 
short- and long-term, can have immunosuppressive ef-
fects [44]. Cardiovascular function, gastrointestinal 
health, endocrine metabolic harmony, and sleep are all 
potentially affected [37]. 

The allostatic load has been characterized using two 
different approaches: the first approach is the use of bio-
markers that depict physiological derangements, while 
another approach focuses on the most severe symptoms 
associated with allostatic overload. The use of biological 
indicators for the diagnosis of allostatic stress has been 
the subject of several studies [45-47]. Juster et al. (2010) 
reviewed 58 allostatic load studies and reported using 
4-18 biomarkers in five physiologic systems of neuro-
endocrine, immune (inflammatory and clotting factors), 
metabolic, cardiovascular/respiratory, and anthropomet-
ric for allostatic load calculation [48]. In another review, 
26 various biomarkers in 18 different ways were used 
to calculate allostatic load in 21 previous studies. The 
number of biomarkers in each calculation varied be-
tween 7 and 14 with at least one biomarker from three 
categories: cardiovascular, metabolic, and immune [49]. 
The allostatic load was also expanded by Karimi et al. 
(2019) into a multisystem biological health score that 
measures characteristics of the endocrine, inflammatory, 
cardiovascular, and metabolic systems, as well as the 
function of two key organs (the liver and the kidney). 
They measured 16 different biomarkers [50]. Nasiri et al. 

(2021 and 2022) also used the same systems with little 
modification of the number (18 biomarkers) and type of 
biomarkers [51, 52]. However, the complexity and dy-
namic nature of this multisystem network means that 
this measure of allostatic stress has several limitations 
[46], despite being a more accurate predictor of mortality 
and decreased physical functioning than single biomark-
ers [48, 53, 54]. Figure 1 shows a schematic view of the 
stress effects in physiologic systems and their influence 
on the allostatic load.

Involvement of immune/inflammatory/hemosta-
sis biomarkers in allostatic load estimation

There is a strong relationship between stress, immune 
function, and inflammation [55-57]. As Figure 2 rep-
resents, immune/inflammatory parameters are used in 
the calculation of allostatic load, indicating that chronic 
stress and subsequent allostatic load are related to in-
flammation. The immune system relies on inflammation 
to function properly. It is the first automatic and broad 
response of the innate immune system [58]. There are 
both pro-inflammatory (such as interleukin [IL]-1, IL-6, 
and tumor necrosis factor [TNF]-a) and anti-inflamma-
tory (such as IL-4 and IL-10) indicators involved in the 
inflammatory response. C-reactive protein (CRP) is an 
example of an acute-phase reactant that is produced in 
response to inflammatory stimulation. Chronic or exces-
sive inflammation may be harmful to health during peri-
ods of chronic stress, even though it is a vital response to 
acute illness or injury [36, 59]. Epidemiological studies 
have linked elevated inflammatory markers in the blood 
to an increased risk of developing cardiovascular dis-
ease, diabetes, cancers, autoimmune diseases, and death 
[36]. Therefore, the use of inflammatory parameters in 
allostatic load calculation can both indicate the severity 
of chronic stress and the serious situation of the body 
in the occurrence of cardiovascular, metabolic diseases, 
and cancer [60]. CRP, IL-6, and fibrinogen were the 
most frequently used immune/inflammatory system bio-
markers in allostatic load estimation [48].

As Figure 2 shows, many hemostasis factors are also 
used as biomarkers in the immune/inflammatory sys-
tem to calculate the allostatic load. During stress, the 
sympathetic nervous system exerts significant effects 
on hemostasis. Within a few minutes, catecholamines, 
particularly epinephrine, stimulate vascular endothelial 
2-adrenergic receptors, resulting in the release of factor 
VIII (FVIII), von Willebrand factor (VWF), and tissue 
plasminogen activator (t-PA) from endothelial storage 
pools into the circulation [61]. Catecholamines also 
stimulate the release of FVIII from the liver and affect 
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the elimination of t-PA and D-dimer from the liver. An-
other important source of acute stress-induced release of 
t-PA into the circulation is sympathetic nerves in densely 
innervated resistance arteries and arterioles, and there is 
a direct correlation between stress-induced increases in 
norepinephrine and D-dimer [62]. Changes in D-dimer 
are significantly correlated with alterations in FVII:C, 
FVIII:C, FXIX:C, VWF:Ag, and soluble tissue factor 
(sTF) [61, 63].

Inflammation and coagulation are closely intertwined 
processes that can significantly influence one another. 
This interaction occurs at the levels of platelet activation, 
fibrin formation, fibrin resolution, and physiological anti-
coagulant pathways [62]. Activation of coagulation gen-
erates proteases that interact not only with coagulation 
protein zymogens but also with specific cell receptors 
to induce signaling pathways that mediate inflammatory 
responses [64]. By binding to protease-activated recep-
tors (PARs), coagulation proteases exert their greatest ef-
fect on inflammation. Recent experiments demonstrated 
that the administration of recombinant factor VIIa to 
healthy human subjects increases plasma levels of IL-6 
and IL-8 by three to four times [65]. PARs play a role in 
coagulation and inflammation in the context of coronary 
artery thrombosis and its subsequent complications [66]. 
Activated platelets serve a crucial role in inflammation, 
particularly in the chronic inflammation associated with 
atherosclerosis. Platelet adhesion to the sub-endothelial 
matrix promotes leukocyte rolling, adhesion, and trans-
migration via the interaction between platelet P-selectin 
and leukocyte P-selectin glycoprotein ligand-1. A lack 
of P-selectin delays the formation of atherosclerotic 
plaques. Platelet-activating factor-mediated activation 
of macrophage 1 antigen (Mac-1) and interaction of this 
integrin with fibrinogen bound to the platelet glycopro-
tein IIb/IIIa receptor stimulate leukocyte adhesion to the 
vessel wall [67]. In addition, activated platelets generate 
a variety of pro-inflammatory cytokines (such as CD40 
ligand and IL-1) and chemokines (such as RANTES and 
platelet factor-4), which may result in the activation of 
monocyte integrins and lead to monocyte recruitment to 
atherosclerotic plaques [68]. Nonetheless, these studies 
provide evidence of a strong connection between stress, 
the immune system, inflammation, and allostatic burden.

2. Conclusion

Stress has been related to a dysregulation of the im-
mune system as well as the endocrine, metabolic, and 
coagulation systems. Exposure to frequent stressors can 
establish a state of repeated physiological arousal, fail-
ure to adapt to repeated stressors, failure to terminate the 

stress response after the stressor has ceased, and insuf-
ficient allostatic response to the stressor can all lead to 
allostatic load/overload. In this condition, many physi-
ological systems interact at varying levels of activity. 
The use of biomarkers of many body systems that de-
pict physiological derangements is the main approach 
to identifying the severity of allostatic load. There is a 
strong relationship between stress, immune function, 
inflammation, and coagulation. Then, immune/inflam-
matory/coagulation biomarkers may play critical roles in 
the calculation of allostatic load, and the recommenda-
tion of more mentioned biomarkers could increase the 
accuracy of allostatic load estimation. 
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