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Review Paper
Investigating Exosomes in SARS-CoV-2 Infection: 
A Potential Partner for Coronavirus Reinfection/
Reactivation

Virus-infected cells secrete exosomes and other extracellular vesicles which could deliver viral 
components, including structural proteins and viral derived-ribonucleic acids to other cells. 

Released extracellular vesicles carry virus-specific receptors that increase the sensitivity of the target 
cells to viral infection. Exosomes may contribute to the systemic spreading of SARS-CoV-2 virus 
by transferring essential receptors, such as angiotensin-converting enzyme 2 and CD9 that promote 
the ability of the virus to dock into the target cells. Subsequently, the SARS-CoV-2 virus might also 
enter into the exosomal pathway to use this system for packaging their components into exosomes 
for secretion.

This study suggests that one of the potential explanations for the relapse and persistence of the SARS-
CoV-2 virus infection could be an endocytic transport pathway related to the secretion of COVID-19-
loaded extracellular vesicles.
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Introduction

ytokine storm is a hyperinflammatory state 
that can occur in response to COVID-19 
infection, leading to rapid spread of the vi-
rus throughout the body [1]. The cytokine 
storm results from a sudden acute increase 

in circulating levels of different pro-inflammatory cyto-
kines, including interleukin 6, interleukin-1 and tumor 
necrosis factor-alpha [2]. The cytokine storm can help 
COVID-19 to spread rapidly throughout the body by 
causing endothelial dysfunction and systemic inflamma-
tion, which can lead to multi-organ failure and death [3]. 
Various drugs, such as tocilizumab and sarilumab, which 
are monoclonal antibodies targeting  interleukin 6 activ-
ity, are being used to treat patients with COVID-19, and 
trials of these agents typically cite the cytokine storm as 
their rationale [4].

In the early phase of infection, COVID-19 targets cells 
(pneumocytes, bronchial and nasal epithelial cells) via 
the spike glycoprotein (S) that interacts with the angio-
tensin-converting enzyme 2 (ACE2) receptor [5]. In ad-
dition, the type 2 transmembrane serine protease (TM-
PRSS2), expressed in the host cell surface, encourages 
viral uptake by excising ACE2 and activating the CO-
VID-19 S glycoprotein, which facilitates virus entry into 
host cells. TMPRSS2 and ACE2 are presented in host 
target cells, mainly pneumocytes, bronchial and nasal 
epithelial II cells [6]. However, coronavirus can spread 
rapidly throughout the body and approximately infect all 
types of cells in different organs, which leads to multi-or-
gan failure in some patients [7]. Therefore, other factors 
in the pathophysiology of SARS-CoV-2 infection should 
be considered. Accordingly, we suggest a model for the 
persistence and reactivation of the COVID-19 virus. In 
this model, one of the potential mechanisms for the re-
lapse and persistence of the SARS-CoV-2 virus infec-
tion could be an endocytic transport pathway related to 
the secretion of COVID-19-loaded extracellular vesicles 
and exosomes.

Extracellular vesicles: Key players in the COV-
ID-19 transmission 

The attachment, fusion and entrance of SARS-CoV-2 
are exerted by a trimeric spike glycoprotein (S protein) 
which is expressed on the surface of the virus (Figure 1). 
Analogous to the envelope of hemagglutinin of influen-
za species or HIV, SARS-CoV-2 S protein also belongs 
to class I fusion proteins [8]. Moreover, the presence of 
receptor-binding domain and intracellular proteolytic 
cleavage is necessary for the fusion of SARS-CoV-2 into 

the target cells [9]. As coronaviruses use transmembrane 
glycoprotein receptors for their entrance into the target 
cells, those cells with more expressed receptors are more 
vulnerable to viral infection [10]. The interaction between 
the SARS-CoV-2 spike protein with the host cell protein 
named dipeptidyl peptidase 4 is essential for the fusion 
of the virus into the host cells to the degree that induc-
tion of any polymorphism in this protein could influence 
the entry of the virus [11]. Furthermore, aminopeptidase 
N (APN) acts as a receptor for various coronaviruses, 
such as transmissible gastroenteritis virus, canine coro-
navirus, feline coronavirus, and human coronavirus [12] 
and regarded as a target for the treatment of cancer [13]. 
APN exists within exosomes and extracellular vesicles 
(EVs) from glial cells (Potolicchio et al. 2005) [14] and 
mast cells [15]. The protease system of SARS-CoV-2 is 
transmembrane-anchored and intracellular linked with 
the type II transmembrane serine protease family which 
is critical for virus infection [16]. Previous studies have 
demonstrated that TMPRSS2 and type II transmembrane 
serine protease family cleaves SARS-CoV-2 spike gly-
coproteins to organize fusion-catalyzing and unlocked 
structure at the cell surface and facilitate virus entrance 
[16, 17]. Several glycoproteins have been reported to be 
necessary to complete the fusion process [18]. Various 
tetraspanins that are anchored in extracellular vesicle 
membranes may contribute to the SARS-CoV-2 fusion 
event [19]. EVs elucidate a new frontline in the viral 
infections field. Initial studies reported that during viral 
infection the number of exosomes released by infected 
cells increased significantly and that exosomes partici-
pate in the spread of viral components in different host 
cells, an event that leads to disease progression [20]. 

In recent years, an increasing number of studies have 
demonstrated the intrinsic role of EVs in injury [21], 
inflammation [22] and viral infection of the respira-
tory tract and lung [23]. EVs are membrane-enclosed 
structures secreted by cells and participate in cell-to-
cell connection through the horizontal delivery of vari-
ous molecules at short and long distances. Viruses and 
EVs have similar physicochemical characteristics, such 
as heterogeneity in size distribution and small size [24], 
and applying similar mechanisms for cell entry and bio-
genesis [24]. Viruses enter the uninfected or healthy cells 
through the endocytic pathway and egress the infectious 
cell by direct budding via the membrane. Commonly, in 
viral infections, EVs surround pathogen-derived lipids, 
proteins, and nucleic acids and become delivery carriers 
for viral elements [24].

Vulnerable cells for coronavirus likely express two 
agents for fusion, proteases, and receptors, with a close 
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affiliation [25]. The TMPRSS2 and tetraspanin CD9 
promote coronavirus entrance and severe pulmonary 
infection in the murine model [26]. In a similar inves-
tigation, Böker et al. demonstrated that increased CD9 
expression had the potential to enhance the speed and 
efficiency of lentiviral transduction in different cell 
lines, including SH-SY5Y, HEK293, T lymphocytes, 
HeLa and B cell [27]. CD9 molecules are expressed in 
the surface of EVs and exosomes and have an essential 
function in exosomes loading cargo and biogenesis [28]. 
Accordingly, EVs and exosomes released from infec-
tious cells hold a respectable share in the infection of 
other cells through delivering CD9 [26]. The uptake 
of exosomes by recipient cells leads to the delivery of 
exosomal cargo [29] and increases susceptibility to viral 
infection. Additionally, CD9 molecules load exosome 
cargo by recruiting the protein-protein communication 
network in the membrane of multivesicular bodies [30] 
(Figure 1). Meanwhile, COVID-19 infection enhanced 
circulating exosomes enclosing viral antigens, lung-re-
lated self-antigens and 20S proteasome [31]. This find-
ing reinforces the idea that SARS-CoV-2 virus-infected 

cells release exosomes comprising virus particles (Fig-
ure 1) or viral components (Figure 2). Exosomes further 
contribute to the systemic spreading of COVID-19 by 
two main mechanisms as follows. Firstly, inhibiting 
induced immune response due to the presence of self-
antigens [32]. Secondly, facilitates coronavirus infection 
through receptors that are separate from viral receptors 
[33]. SARS-CoV-2 uses EVs, specifically exosomes, for 
host cell entrance, viral spreading and evasion from the 
immune response. 

Conclusion

By bringing together the findings from these research-
es, we suggest that one of the potential explanations 
for the relapse and persistence of the SARS-CoV-2 vi-
rus infection could be an endocytic transport pathway 
related to the secretion of COVID-19-loaded EVs and 
exosomes (Figure 1). This “Trojan Horse” mechanism 
may bring a possible description for the re-emergence of 
the viral RNA in the recovered SARS-CoV-2 individuals 
1-2 weeks post-discharge, signifying that viral elements 

Figure 1. A proposed model for SARS-CoV-2 life-cycle in human lung cells
Notes: 1) Through interaction with the angiotensin-converting enzyme 2 receptor, SARS-CoV-2 uses its Spike protein to en-
ter into the target epithelial cells. Upon binding to the angiotensin-converting enzyme 2 receptor, the conformation of spike 
protein changes in the way that it could recruit endosomal pathways, an event that augments the fusion ability of the virus; 
2) Subsequently, the entered SARS-CoV-2 distributes viral RNA into the cytoplasmic space; 3) Alternatively, intact viruses 
or components of COVID-19 may find a way into the exosomal pathway via multivesicular bodies; 4) In response to viral 
proteinases, the replica polyproteins, which were produced by the released RNA, degrade into viral particles; 5 & 6) After as-
sembling as virions in host cells’ endoplasmic reticulum and Golgi, viral components exit the host cells as extracellular vesicles 
and exosomes. The exosomal pathway contributes to the spread and persistence of the viral particles by delivering CD9 and 
angiotensin-converting enzyme 2 to other target cells.
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were concealed within such exosomes or EVs during 
this latency period and then initiated to re-spread again.
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