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Review Paper
Investigating the Role of Sulfur Mustard in Triggering 
Molecular Inflammatory Mechanisms

Sulfur mustard, a chemical warfare agent, that has been used in the Iraq-Iran conflict, exerts its 
devastating effects through multifaceted biochemical pathways. Its primary mode of action involves the 
alkylation of cellular macromolecules, particularly DNA and proteins, leading to cellular dysfunction 
and damage. DNA alkylation by sulfur mustard results in the formation of adducts, causing genetic 
mutations, chromosomal aberrations and ultimately cell death or malignant transformation. Similarly, 
protein alkylation disrupts cellular signaling pathways and homeostasis, contributing to tissue damage 
and dysfunction. Additionally, sulfur mustard exposure induces the generation of reactive oxygen 
species, exacerbating cellular damage, inflammation, and oxidative stress. This triggers the activation 
of inflammatory pathways, including NF-κB, MAPK, JAK/STAT and inflammasome activation, 
leading to the production of cytokines, adhesion molecules, chemokines, activator protein-1 (AP-1), 
and other inflammatory mediators. The inflammatory cascade initiated by sulfur mustard exposure 
perpetuates tissue damage, immune cell recruitment and systemic effects, enhancing acute symptoms 
and potential long-term health complications.
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Introduction

ulfur mustard is a chemical warfare agent 
with a notorious history of use in warfare due 
to its devastating effects on the human body. 
Sulfur mustard has its origins in the late 19th 
and early 20th centuries, coinciding with the 

rapid progress of organic chemistry and the emergence 
of chemical warfare [1]. It was synthesized inadvertently 
by German chemist Frederick Guthrie in 1860 during ex-
periments with thiodiglycol. Sulfur mustard’s potential as 
a chemical weapon was not fully realized until later. With 
the beginning of World War I, military strategists recog-
nized the potential of chemical agents to break the trench 
warfare stalemate. With its ease of synthesis, stability and 
devastating effects on the human body, sulfur mustard 
emerged as a prime candidate for weaponization. The 
onset of World War II saw the resurgence of sulfur mus-
tard, utilized by both Axis and Allied powers, although 
its actual use remained limited during the conflict [1]. 
Subsequent conflicts, including the Iraq-Iran War in the 
1980s, saw the continued use of sulfur mustard by the 
Iraqi military, resulting in significant casualties in Iranian 
soldiers and civilians and long-term health consequences 
for affected populations [2].

This chemical exerts its toxic effects through several 
mechanisms, primarily targeting cells with high meta-
bolic activity. Upon contact with biological tissue, sul-
fur mustard rapidly penetrates cell membranes and en-
ters the intracellular environment, where it initiates its 
destructive actions. One of the primary mechanisms of 
sulfur mustard toxicity is its alkylating properties [3]. 
Sulfur mustard contains electrophilic sulfur atoms that 
react with nucleophilic groups on cellular components 
such as proteins and DNA. These reactions result in the 
formation of covalent bonds, disrupting the structure and 
function of these biomolecules and leading to cellular 
dysfunction and tissue damage [4].

Sulfur mustard induces oxidative stress within cells by 
generating reactive oxygen species (ROS). These ROS 
can cause oxidative damage to cellular macromolecules, 
such as DNA, proteins and lipids, which exacerbate cel-
lular dysfunction and contribute to tissue injury [5, 6]. 
Additionally, sulfur mustard interferes with cellular sig-
naling pathways involved in inflammation and immune 
response. It activates pro-inflammatory transcription 
factors, leading to the upregulation of inflammatory me-
diators and cytokines. This dysregulated inflammatory 
response amplifies tissue damage and contributes to the 
pathogenesis of sulfur mustard toxicity [6].

Sulfur mustard exposure can have profound and wide-
spread effects on various organ systems, resulting in 
acute and chronic health consequences. The skin, eyes, 
respiratory system and immune system are particularly 
vulnerable to the toxic effects of sulfur mustard [7].

In the immune system, sulfur mustard disrupts the func-
tion of immune cells, such as lymphocytes, macrophages, 
and neutrophils, impairing host defense mechanisms and 
predisposing individuals to opportunistic infections [8]. It 
plays a significant role in triggering inflammation through 
its actions on cellular signaling pathways and immune re-
sponses. The alkylating properties of sulfur mustard and its 
ability to induce oxidative stress lead to the activation of 
pro-inflammatory transcription factors, pro-inflammatory 
cytokines, chemokines, adhesion molecules and the upreg-
ulation of inflammatory mediators [9].

However, sulfur mustard is a potent chemical warfare 
agent that causes severe damage to the human body 
through its alkylating properties, induction of oxidative 
stress and dysregulation of inflammatory pathways. De-
termination of its mechanisms and its role in triggering 
inflammation would be useful to better realize the patho-
genesis of sulfur mustard toxicity. This study reviews 
sulfur mustard’s mechanisms, its effects on the body and 
its role in triggering inflammation.

Toxicity of sulfur mustard

Sulfur mustard possesses a biochemical arsenal that un-
derlies its infamous reputation as a potent chemical war-
fare agent. This arsenal comprises a range of molecular 
mechanisms through which sulfur mustard inflicts dam-
age at the cellular and molecular levels, leading to devas-
tating effects on exposed individuals. These biochemical 
processes are crucial for comprehending the full extent 
of sulfur mustard’s toxicity and for developing effective 
strategies to counteract its harmful effects [10].

One of sulfur mustard’s primary actions involves the 
alkylation of cellular macromolecules, including DNA, 
and proteins. This leads to alterations in their structure 
and function, disrupting cellular processes and triggering 
downstream effects [11].

DNA alkylation, because of sulfur mustard, represents 
a critical aspect of its toxic mechanism, contributing to 
the genetic damage and cellular dysfunction observed 
following exposure to this chemical agent. Sulfur mus-
tard’s ability to alkylate DNA arises from its electrophil-
ic nature, which allows it to form covalent bonds with 
nucleophilic sites on the DNA molecule [12].
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Upon contact with biological tissues, sulfur mustard 
undergoes hydrolysis, leading to the formation of highly 
reactive intermediates, such as episulfonium ions and 
cyclic sulfonium ions. These reactive species readily 
react with nucleophilic sites on DNA bases, including 
adenine, guanine, cytosine, and thymine, resulting in the 
formation of DNA adducts [13].

The alkylation of DNA by sulfur mustard can occur 
through various mechanisms, including the following items. 

Monoadduct formation

Sulfur mustard can form monoadducts by alkylating a 
single nucleotide base within the DNA molecule. This 
may involve the transfer of an alkyl group from sulfur 
mustard to the N7 position of guanine, the N3 position 
of adenine, or the O6 position of guanine, resulting in the 
formation of alkylated DNA bases [14].

Cross-link formation

Sulfur mustard can also induce the formation of inter-
strand and intrastrand DNA cross-links, where covalent 
bonds are established between adjacent or distant nucle-
otide bases. Interstrand cross-links occur when sulfur 
mustard alkylates bases on opposing DNA strands, while 
intrastrand cross-links involve the alkylation of adjacent 
bases within the same DNA strand [15].

DNA-protein cross-linking

In addition to DNA-DNA cross-links, sulfur mustard 
can also induce cross-links between DNA and proteins, 
particularly histones. This can interfere with chromatin 
structure and DNA packaging, disrupting gene expres-
sion and DNA repair processes [16].

The formation of DNA adducts by sulfur mustard can 
have profound consequences for cellular function and 
genomic stability. DNA adducts can distort the structure 
of the DNA molecule, interfere with DNA replication 
and transcription, and impede the activity of DNA re-
pair enzymes. As a result, cells may accumulate genetic 
mutations, chromosomal aberrations and DNA strand 
breaks, leading to cell death, apoptosis, or malignant 
transformation [17, 18]. The genotoxic effects of sulfur 
mustard-induced DNA alkylation extend beyond the 
immediate site of exposure, affecting both dividing and 
non-dividing cells throughout the body. This can lead 
to a wide range of acute and long-term health effects, 
including carcinogenesis, mutagenesis, and heritable ge-
netic damage [18, 19].

Protein alkylation, because of sulfur mustard exposure, 
represents a critical aspect of its toxic mechanism, con-
tributing to cellular dysfunction, disruption of signaling 
pathways, and ultimately, tissue damage. Sulfur mustard 
reacts with nucleophilic sites on proteins and alters pro-
tein structure and function, with profound implications 
for cellular homeostasis and function [20, 21]. 

Protein alkylation by sulfur mustard can occur through 
various mechanisms as follows. Firstly, the modifica-
tion of nucleophilic amino acid residues, in which sul-
fur mustard primarily targets nucleophilic amino acid 
residues within proteins, such as cysteine, histidine and 
lysine. The reactive sulfur atoms in sulfur mustard can 
form covalent bonds with the thiol group (-SH) of cys-
teine residues, resulting in the formation of S-alkylated 
cysteine adducts. Similarly, sulfur mustard can react 
with the imidazole group of histidine residues and the 
amino group of lysine residues, leading to the formation 
of alkylated histidine and lysine adducts, respectively 
[21, 22]. Secondly, through the disruption of protein 
structure and function, the alkylation of critical amino 
acid residues within proteins can lead to structural altera-
tions that disrupt protein folding, stability and function. 
This may interfere with enzymatic activities, protein-
protein interactions, and cellular signaling pathways, 
leading to dysregulation of essential cellular processes. 
For example, the alkylation of cysteine residues within 
enzymes can impair their catalytic activity, while the 
alkylation of histidine residues within receptors or ion 
channels can disrupt their function [21]. Thirdly, via 
the formation of cross-links and aggregates, in addition 
to single-site alkylation, sulfur mustard can induce the 
formation of protein-protein cross-links and aggregates 
through the alkylation of multiple amino acid residues 
within or between protein molecules. These cross-links 
and aggregates can alter the physical properties of pro-
teins, leading to the formation of insoluble aggregates 
or fibrils that are resistant to degradation. This can im-
pair cellular protein turnover and clearance mechanisms, 
contributing to cellular dysfunction and toxicity [23]. 
Fourthly, by activation of stress response pathways, 
protein alkylation by sulfur mustard can trigger cellular 
stress response pathways, such as the unfolded protein 
response and the heat shock response. These pathways 
are activated in response to protein misfolding, aggrega-
tion, or damage, and serve to restore protein homeostasis 
and promote cell survival. However, chronic activation 
of stress response pathways can overwhelm cellular de-
fenses and contribute to cell death or apoptosis [24].
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The consequences of protein alkylation by sulfur mus-
tard extend beyond the immediate site of exposure, af-
fecting cellular function and viability throughout the 
body. Dysregulation of essential proteins and signaling 
pathways can lead to a wide range of acute and long-
term complications, including inflammation, cytotoxic-
ity, and tissue damage. Moreover, protein alkylation may 
contribute to the development of chronic inflammatory 
diseases and carcinogenesis through sustained activation 
of inflammatory and proliferative signaling pathways 
[21, 22, 24].

Generation of ROS by sulfur mustard

The generation of ROS due to sulfur mustard exposure 
represents a significant aspect of its toxic mechanism, 
contributing to oxidative stress, cellular damage, and 
inflammation. ROS is a highly reactive molecule con-
taining oxygen atoms with unpaired electrons, such as 
superoxide anion (O2•−), hydroxyl radical (•OH) and hy-
drogen peroxide (H2O2) [25]. Sulfur mustard can induce 
the production of ROS through several mechanisms. 

Direct oxidative reactions

Sulfur mustard contains electrophilic sulfur atoms that 
can directly react with cellular molecules, including pro-
teins, lipids, and DNA, leading to the generation of ROS 
as byproducts. For example, sulfur mustard can undergo 
redox reactions with thiol (-SH) groups in proteins, re-
sulting in the formation of sulfenic acid intermediates 
and subsequent release of superoxide radicals [26, 27].

Induction of enzymatic pathways

Sulfur mustard exposure can activate cellular enzymes, 
such as nicotinamide adenine dinucleotide phosphate 
oxidases and xanthine oxidase, which are responsible for 
the production of ROS under physiological conditions. 
Increased enzymatic activity in response to sulfur mus-
tard exposure can lead to elevated ROS levels, contribut-
ing to oxidative stress and cellular damage [26].

Mitochondrial dysfunction

Sulfur mustard-induced cellular stress can impair mito-
chondrial function, leading to the leakage of electrons from 
the electron transport chain and the production of ROS. 
Mitochondria are a major source of ROS in cells, and dis-
ruption of mitochondrial integrity by sulfur mustard can 
exacerbate oxidative stress and cellular injury [28, 29].

Inflammatory responses

Inflammation triggered by sulfur mustard exposure 
can further contribute to ROS generation through the 
activation of immune cells, such as neutrophils and 
macrophages. These cells produce ROS as part of their 
antimicrobial defense mechanisms, but excessive ROS 
production can lead to collateral damage to surrounding 
tissues and exacerbate oxidative stress [29, 30].

The consequences of ROS generation due to sulfur 
mustard exposure are manifold and can impact various 
cellular components and signaling pathways. Firstly, by 
oxidative damage to biomolecules, ROS generated by 

Figure 1. Molecular mechanisms of inflammation induced by sulfur mustard
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sulfur mustard can react with cellular macromolecules, 
including lipids, proteins and DNA, leading to oxidative 
modifications and damage. Lipid peroxidation, protein 
oxidation, and DNA strand breaks can occur, compro-
mising cellular integrity and function [7, 31, 32]. Sec-
ondly, by the activation of inflammatory responses, ROS 
can act as signaling molecules that modulate inflamma-
tory pathways and cytokine production in response to 
sulfur mustard exposure. Elevated ROS levels can trig-
ger the activation of transcription factors, such as nuclear 
factor-kappa B (NF-κB) and activator protein-1 (AP-1), 
leading to the expression of pro-inflammatory genes and 
amplification of the inflammatory response [18, 33-35]. 
Thirdly, through cellular dysfunction and apoptosis, Ex-
cessive ROS production can disrupt cellular homeosta-
sis and induce programmed cell death pathways, such 
as apoptosis. ROS-mediated damage to mitochondria, 
DNA, and other cellular components can trigger apop-
totic signaling cascades, leading to cell death and tissue 
injury [36, 37]. lastly, by the amplification of oxidative 
stress, ROS can propagate oxidative damage through a 
process known as oxidative stress, wherein the imbalance 
between ROS production and antioxidant defenses leads 
to sustained cellular damage and dysfunction. This can 
perpetuate a cycle of inflammation, oxidative stress, and 
tissue injury in sulfur mustard-exposed tissues [38, 39].

Activation of inflammatory pathways by sulfur 
mustard

The activation of inflammatory pathways by sulfur 
mustard is a pivotal aspect of its toxic mechanism, con-
tributing to tissue damage, immune cell recruitment, and 
the amplification of the inflammatory response. Sulfur 
mustard exposure triggers a cascade of molecular events 
that culminate in the activation of pro-inflammatory sig-
naling pathways, leading to the production of cytokines, 
chemokines, and other inflammatory mediators [40-42]. 
Several key pathways are involved in this process. First, 

the NF-κB pathway is involved as NF-κB is a transcrip-
tion factor that plays a central role in regulating the ex-
pression of genes involved in inflammation, immune 
response, and cell survival. Sulfur mustard exposure 
activates NF-κB signaling through various mechanisms, 
including the direct oxidation of inhibitory proteins and 
the activation of upstream kinases such as IκB kinase. 
NF-κB can translocate to the nucleus and induce the ex-
pression of pro-inflammatory genes, including cytokines 
(e.g. interleukin-1, tumor necrosis factor-alpha), chemo-
kines, adhesion molecules and inflammatory enzymes 
(e.g. cyclooxygenase-2, inducible nitric oxide synthase). 
This leads to the recruitment of immune cells, vasodila-
tion, and tissue inflammation [43, 44]. Secondly, through 
the mitogen-activated protein kinase (MAPK) pathway 
as MAPKs are a family of serine/threonine protein ki-
nases involved in cellular signaling pathways regulating 
inflammation, cell proliferation and apoptosis. Sulfur 
mustard exposure can activate MAPK signaling path-
ways, including extracellular signal-regulated kinase, 
c-Jun N-terminal kinase and p38 MAPK. The activa-
tion of these pathways leads to the phosphorylation and 
activation of transcription factors, such as AP-1, which 
promotes the expression of pro-inflammatory genes and 
amplifies the inflammatory response [43, 45]. Thirdly, 
through Janus kinase/signal transducer and activator of 
transcription (JAK/STAT) pathway, as the JAK/STAT 
pathway is another key signaling pathway involved in 
inflammation and immune responses. Sulfur mustard ex-
posure can activate the JAK/STAT pathway through the 
release of cytokines such as interleukin-6 (IL-6) and in-
terleukin-8 (IL-8), which bind to their respective recep-
tors and activate JAK kinases. Activated JAK kinases 
phosphorylate and activate STAT transcription factors, 
which translocate to the nucleus and regulate the ex-
pression of genes involved in inflammation, cell prolif-
eration, and immune regulation [46]. Fourthly, through 
inflammasome activation as the inflammasome is a mul-

Figure 2. Consequences of inflammatory response induced by sulfur mustard
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tiprotein complex involved in the activation of inflam-
matory responses and the processing of pro-inflammato-
ry cytokines, such as interleukin-1β and interleukin-18. 
Sulfur mustard exposure can trigger inflammasome 
activation through various mechanisms, including the 
release of danger-associated molecular patterns from 
damaged cells, such as adenosine triphosphate and ROS. 
Activated inflammasomes cleave pro-interleukin-1β and 
pro-interleukin-18 into their active forms, leading to the 
release of mature cytokines and the amplification of in-
flammation [47, 48].

The activation of inflammatory pathways by sulfur 
mustard contributes to the recruitment of immune cells, 
such as neutrophils, macrophages, and lymphocytes, to 
the site of injury. These immune cells release additional 
pro-inflammatory mediators and ROS, further exacer-
bating tissue damage and inflammation. Chronic acti-
vation of inflammatory pathways by sulfur mustard can 
lead to the development of chronic inflammatory diseas-
es, tissue fibrosis, and long-term health complications in 
exposed individuals [49]. Figure 1 shows a brief review 
of the molecular mechanisms of inflammation induced 
by sulfur mustard.

Inflammatory cascade induced by sulfur mustard

The cascade of inflammatory responses elicited by sul-
fur mustard exposure, ignite a destructive cycle of tis-
sue damage and immune activation. Upon contact with 
biological tissue, sulfur mustard triggers a rapid and ro-
bust inflammatory reaction characterized by the release 
of pro-inflammatory mediators and the recruitment of 
immune cells to the site of exposure. This inflammatory 
cascade is orchestrated by a complex network of signal-
ing pathways and molecular interactions, leading to the 
amplification of tissue damage and the propagation of 
systemic effects [50].

Sulfur mustard exposure stimulates the release of vari-
ous pro-inflammatory mediators, including cytokines, 
chemokines, and lipid mediators, from injured tissues, 
immune cells, and resident cells at the site of exposure. 
These mediators play diverse roles in modulating the in-
flammatory response, promoting vasodilation, increas-
ing vascular permeability, and activating immune cells.

Pro-inflammatory cytokines, such as interleukin-1, tu-
mor necrosis factor-alpha, and interleukin-6, are among 
the earliest mediators released in response to sulfur mus-
tard exposure. These cytokines stimulate immune cell 
activation, promote inflammation, and contribute to tis-
sue injury and repair processes [51, 52].

Chemokines are chemotactic cytokines that guide the 
migration of immune cells to sites of inflammation. Sul-
fur mustard exposure induces the production of chemo-
kines, such as interleukin-8 and monocyte chemoattrac-
tant protein-1, which recruit neutrophils, macrophages, 
and other immune cells to the affected tissues [53].

Mediators, such as prostaglandins, leukotrienes, and 
platelet-activating factors, contribute to the inflammatory 
response by modulating vascular permeability, smooth mus-
cle contraction, and immune cell activation. Sulfur mustard 
exposure can enhance the production of these mediators, ex-
acerbating inflammation and tissue injury [50, 54].

Sulfur mustard exposure triggers the recruitment and 
activation of immune cells, including neutrophils, macro-
phages, and lymphocytes, to the site of injury. These im-
mune cells play crucial roles in orchestrating the inflamma-
tory response, phagocytosing damaged cells and debris, and 
initiating tissue repair processes. Neutrophils are among the 
first immune cells to respond to sulfur mustard exposure, 
migrating to the site of injury and releasing inflammatory 
mediators and cytotoxic substances. While neutrophils play 
a critical role in host defense, excessive neutrophil activa-
tion can contribute to tissue damage and inflammation [8]. 
Macrophages are phagocytic immune cells that engulf and 
digest cellular debris, pathogens and foreign substances. 
Sulfur mustard exposure activates macrophages, promoting 
the release of pro-inflammatory cytokines, chemokines and 
ROS, which amplify the inflammatory response and contrib-
ute to tissue damage [50]. Lymphocytes, including T cells, 
B cells and natural killer cells, are involved in regulating the 
inflammatory response and coordinating adaptive immune 
responses. Sulfur mustard exposure can modulate lympho-
cyte function and promote immune dysregulation, leading 
to prolonged inflammation and impaired tissue repair [55].

The inflammatory response triggered by sulfur mustard 
exposure causes oxidative stress, protease activation, 
and immune cell-mediated cytotoxicity leading to the 
development of acute symptoms and long-term compli-
cations [56].

Inflammatory mediators released during sulfur mus-
tard exposure can activate proteolytic enzymes, such as 
matrix metalloproteinases and elastases, which degrade 
extracellular matrix components and promote tissue re-
modeling. Dysregulated protease activity can exacerbate 
tissue damage and impair wound-healing processes [39, 
57, 58]. Figure 2 indicates the consequences of the in-
flammatory response induced by sulfur mustard.
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Inflammatory processes and oxidative stress due to sul-
fur mustard exposure could progress senescence and cell 
aging which have been confirmed by telomere attrition, 
increased expression of aging-related genes and exacer-
bating of biological health [59-61]. 

Conclusion

The toxicity of sulfur mustard stems from its multifac-
eted biochemical mechanisms, which inflict damage at 
the cellular and molecular levels. Through the alkylation 
of cellular macromolecules such as DNA and proteins, 
sulfur mustard disrupts essential cellular processes, 
leading to genetic damage, cellular dysfunction, and tis-
sue injury. The formation of DNA adducts and protein 
modifications impairs cellular function and contributes 
to long-term health effects, including carcinogenesis 
and chronic inflammatory diseases. Additionally, sulfur 
mustard induces the generation of ROS and activates in-
flammatory pathways, further exacerbating tissue dam-
age and immune activation. 

The cascade of inflammatory responses triggered by 
sulfur mustard exposure perpetuates a cycle of tissue in-
jury and inflammation, leading to acute symptoms and 
potentially long-term health complications. Determina-
tion of these intricate mechanisms would be useful in 
finding effective strategies to mitigate the harmful ef-
fects of sulfur mustard exposure and alleviate the burden 
on chemical veterans.
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