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Introduction

Ithough the pathophysiology of chronic
spontaneous urticaria (CSU) has not been
fully understood, mast cells and basophils
play a contributory role in disease pathogen-
esis. However, other molecules, such as eo-
sinophils and neutrophils, also play a role in the disease
pathogenesis. The visible signs of urticaria arise when
blood vessels become more permeable, a change driven
by mast cells releasing stored mediators, such as hista-
mine, tryptase, and leukotrienes, along with subsequent
cytokine production. The current research assessed how
mast cells are triggered by antigens in the bloodstream,
with mouse studies suggesting that CD301b+ dermal
dendritic cells may be the initial antigen samplers that
subsequently transfer these signals to nearby mast cells
through the release of microvesicles [1]. However, most
cases of chronic urticaria do not have an identified trig-
ger, rendering them idiopathic. Mast cells can get acti-
vated through immunologic and nonimmunologic path-
ways. Figure 1 provides a schematic overview of CSU’s
multifactorial pathogenesis, illustrating the interplay of
immune dysregulation, gut microbiome imbalances, and
neuroimmune interactions, with arrows highlighting the
dynamic connections between immune cells, microbial
metabolites, and neural pathways. A PubMed search
was conducted for articles published between 1990
and March 2024 using keywords related to CSU, mast
cell activation, autoimmunity, neuroimmune signaling,
and gut microbiota. Additional references were identi-
fied through manual screening of bibliographies from
relevant publications. Included studies were English-
language publications that addressed mechanisms un-
derlying CSU, particularly those involving immune dys-
regulation, neuropeptides, and microbiome interactions.
Articles focused solely on treatment outcomes, case re-
ports, or lacking methodological clarity were excluded.

How Immunological Triggers Activate Mast
Cells in CSU

The initial evidence of immunologically driven mast
cell activation was obtained by observing wheal forma-
tion at the site of an intradermal injection of the patient’s
serum, a procedure now known as the autologous serum
skin test (ASST). A substantial proportion of CSU cases
are believed to result from immunologically driven acti-
vation of mast cells or basophils. This activation is pri-
marily mediated through two distinct endotypes: Type 1
autoallergic CSU, characterized by IgE autoantibodies
against autoantigens such as thyroid peroxidase (TPO),
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or Interleukin 24 (IL-24), and type IIb autoimmune CSU,
driven by IgG autoantibodies targeting IgE or its high-
affinity receptor FceRI [2, 3]. While type I autoallergic
CSU appears to be more prevalent, type IIb autoimmune
CSU is estimated to affect fewer than 10% of patients
when strict diagnostic criteria are applied [2]. Emerging
evidence suggests that these endotypes may overlap in
some individuals, underscoring the complexity of CSU
pathogenesis and the need for refined diagnostic mark-
ers [4].

In the early 1990s, research suggested that IgE autoan-
tibodies play a crucial role in the development of CSU.
This insight, supported by subsequent studies, paved the
way for a groundbreaking randomized controlled trial
that tested omalizumab, an anti-IgE antibody, in CSU
patients who exhibited IgE reactivity to TPO, a frequent-
ly implicated autoallergen. Named the X-CUISITE trial,
the study found that omalizumab prompted a rapid and
impressive complete response in 70% of patients, out-
performing outcomes in later trials. Subsequent research
into the distribution, function, and targets of IgE autoan-
tibodies has reinforced these findings and culminated in
the classification of a type I autoimmune (or auto-aller-
gic) endotype of CSU.

IgG autoantibodies to high-affinity receptor FceRI and/
or IgE were detected more than 30 years ago; today, pa-
tients with these autoantibodies are classified as having
type IIb autoimmune CSU. The international PURIST
(profiling urticaria for the identification of subtypes)
study was the first large-scale investigation on CSU
patients to evaluate three key features of type IIb auto-
immune CSU: A positive ASST, the detection of IgG
autoantibodies against either FceRI or IgE, and a posi-
tive basophil test (using either the basophil activation
test or the basophil histamine release assay). This study
revealed that under 10% of CSU patients exhibit type
IIb aiCSU, with these individuals typically experiencing
more severe symptoms, reduced total IgE levels, and in-
creased TPO autoantibodies. Nevertheless, there is a sig-
nificant challenge in performing these three tests simul-
taneously in the laboratory due to their high costs and
limited availability. Scientists are working to find more
accessible biomarkers to improve the diagnosis and un-
derstanding of the condition. One promising avenue is
analyzing the anti-TPO/IgE ratio, which recent studies
suggest could be a more upfront and effective alternative
to current testing methods [5].
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Meanwhile, ongoing research indicates that IgM and
IgA autoantibodies targeting FceRI may contribute to the
disease’s progression, adding another layer of complexi-
ty to the underlying mechanisms of CSU [6]. In addition,
over the past decade, extra markers, such as nocturnal
symptoms, eosinopenia, and low total IgA, have been
identified, while recent findings highlight that type IIb
aiCSU often responds poorly or only slowly to standard
therapies, like antihistamines and omalizumab.

Concerning the potential overlap between these two
endotypes, Asero et al. [7] investigated the simultaneous
presence of IgG and IgE autoantibodies against IgE re-
ceptors (FceRI and FceRII), tissue factor, and thyroglob-
ulin. Their study revealed that more than half of CSU
patients possess both types of autoantibodies targeting
these molecules. Furthermore, biomarkers of type IIb
aiCSU, such as basophil activation tests and indicators
of auto-allergic CSU, like IgE autoantibodies against IL-
24, have been repeatedly linked to heightened disease
activity and basopenia. Additional research has shown
that CSU patients frequently co-express both IgE and
IgG autoantibodies against TPO, with distinct autoanti-
body profiles correlating with disease severity, reduced
basophil counts, and a favorable response to omali-
zumab, further underscoring the complex autoimmune
nature of this condition.

Spleen tyrosine kinase (SYK) overexpression and
its impact on mast cell signaling

CSU is underpinned by dysregulated activation of
inflammatory cells, chiefly mast cells and basophils,
through intricate intracellular signaling mechanisms.
In mast cells, the engagement of the high-affinity IgE
receptor (FceRI) comprising an o-subunit that binds
IgE and B/y subunits containing ITAMs triggers phos-
phorylation events that recruit SYK [8]. SYK then initi-
ates downstream cascades, including the PI3K pathway,
which ultimately leads to the degranulation process
characterized by the release of histamine, lipid media-
tors, and cytokines [9]. Notably, mast cells from CSU
patients, particularly those classified as responders (with
degranulation activity exceeding 10%), present higher
SYK expression in contrast to non-responders, wherein
phosphatase activity (such as through SHIP proteins)
dampens SYK activation and histamine release [10].

Similarly, basophils, which share the FceRI with mast
cells, contribute to CSU pathogenesis by migrating from
the bloodstream to sites of wheals in response to che-
motactic cues, like MCPs [11-13] and a PGD2-depen-
dent pathway [11]. Once at the site, basophils release
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mediators, such as histamine and leukotriene C4 [14],
with their intracellular signaling also governed mainly
by SYK activation. In CSU patients, basophils can be
categorized into two functional phenotypes [15]: In one,
high SYK levels facilitate robust histamine degranula-
tion akin to that observed in healthy cells, while in the
other phenotype, dephosphorylation of SYK by excess
phosphatases curbs histamine release. Studies have high-
lighted a reduction in SHIP levels within the basophils
of individuals affected by CSU. Additionally, investiga-
tions into mast cell responses have shown that in patients
exhibiting histamine release upon anti-IgE stimulation,
SHIP-2 expression is diminished, while SYK levels are
increased [10, 16].

SYK inhibitors have been identified as promising can-
didates for the future treatment of CSU. Among these,
GSK2646264, a selective SYK inhibitor, is currently
undergoing evaluation in a clinical trial to assess its po-
tential effectiveness in managing CSU symptoms. These
findings highlight the potential therapeutic value of tar-
geting this pathway to alleviate symptoms [17].

How non-immunological triggers activate
mast cells in CSU

Although IgE and IgG-dependent stimulation cause
degranulation in mast cells, these cells can also be ac-
tivated by mechanisms independent of these pathways.
Cutaneous mast cells can be degranulated by polybasic
agents, such as Poly-L-lysine or the 80/48 combination,
through the expression of the G protein-coupled receptor
associated with the X2 gene (MrgX2) [18]. Studies indi-
cate that CSU patients exhibit higher concentrations of
MRGPRX?2 ligands, including substance P (SP) and va-
soactive intestinal peptide (VIP), in their skin compared
to healthy individuals. Furthermore, mast cells activated
by anti-IgE release cortistatin (CST), a potent MRG-
PRX2 agonist, which triggers a concentration-dependent
degranulation process in human skin mast cells [19].
Mast cells also express neuropeptide receptors, includ-
ing neurokinin receptors 1 and 2 (NK1R and NK2R),
the calcitonin gene-related peptide (CGRPR) receptor,
as well as neurotrophin receptors and tropomyosin-re-
lated kinases (TrkA, TrkB, TrkC) [18]. Neuropeptides,
like SP, VIP, and somatostatin, can trigger both mast cell
degranulation and cytokine production. Despite the wide
range of neuropeptide receptors present in mast cells,
MrgX?2 appears to be the most critical receptor for their
activation. In CSU, neurogenic inflammation may arise
due to heightened CST and neuropeptide production by
mast cells and sensory nerves, leading to a continuous
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cycle of mast cell activation. This activation further at-
tracts inflammatory cells, such as eosinophils, which
release MRGPRX2 ligands, including major basic pro-
tein (MBP) and eosinophil peroxidase (EPO), ultimately
stimulating histamine release through MRGPRX2 sig-
naling [20].

Protease-activated receptors (PARs) belong to the G
protein-coupled receptor family and are activated when
their extracellular domain is cleaved by specific serine
proteases, such as trypsin, tryptase, and activated coagu-
lation factors. These receptors are expressed in various
cell types, including mast cells, platelets, endothelial
cells, and neurons. In mammals, there are four types
of these receptors (PAR-1, PAR-2, PAR-3, and PAR-
4). Some studies have highlighted mast cell activation
via PAR2 agonists, such as trypsin. Furthermore, an
increased expression of PAR2 in mast cells has been
observed in urticarial lesions compared to healthy skin.
Additionally, elevated mRNA expression of PAR-1 and
PAR-2 in human mast cells has been reported, despite
the absence of histamine release in response to PAR-1
and PAR-2 agonists [21].

Studies have shown that CSU patients exhibit reduced
plasma levels of IL-35 and vitamin D. Consequently,
targeting pathways associated with these molecules
may provide a promising approach for CSU treatment.
Furthermore, several cytokines and receptors, including
IL-4, IL-5, IL-13, TSLP, C5a, the C5a receptor (C5aR),
and chemokine receptor 3 (CCR3), are currently being
investigated in clinical trials as potential therapeutic
agents [21, 22]. These findings emphasize that the un-
derlying mechanisms of CSU are more complex than
previously believed. There is a possibility that autoan-
tibodies against mast cell-activating receptors, such as
C5a or MRGPRX2, exist; however, this has yet to be
confirmed through research [2] (Table 1).

The Role of the Gut Microbiome in CSU

The gut microbiota is a vast and interconnected eco-
system within the body, essential for maintaining overall
health. It plays a key role in digestion, supports immune
function, and helps regulate various physiological pro-
cesses by ensuring a balanced mix of beneficial microor-
ganisms. Disruptions in this intricate network have been
linked to multiple health conditions, including allergic
diseases, like asthma [24], food allergies [25], and atopic
dermatitis [26]. Recent studies have focused on the role
of the gut microbiome in CSU pathogenesis, reporting
changes in gut microbiota in CSU patients. A decrease in
microbial diversity in CSU patients has been reported in
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many studies. This decline leads to dysbiosis, character-
ized by areduction in beneficial bacterial species, such as
Faecalibacterium prausnitzii, Bacteroidetes, Firmicutes,
and Lactobacillus, while opportunistic bacteria, like En-
terobacteriaceae and Proteobacteria, proliferate [27]. For
instance, a study [28] examined gut dysbiosis, revealing
reduced bacterial diversity and lower levels of beneficial
short-chain fatty acid (SCFA)-producing bacteria, such
as Roseburia hominis. Conversely, opportunistic patho-
gens, like Klebsiella pneumoniae, were elevated, which
are harmful to intestinal wall integrity. These microbial
alterations were associated with increased blood lipo-
polysaccharide (LPS) levels, immune dysregulation, and
higher mast cell activity, suggesting that gut microbiota
imbalances contribute to CSU pathogenesis. Moreover,
Wang et al. [29] reported decreased bacterial diversity in
CSU patients by increased levels of unidentified Entero-
bacteriaceae and reduced levels of beneficial bacteria,
such as Bacteroides, Faecalibacterium, Bifidobacterium,
and unidentified Ruminococcaceae.

These microbial imbalances may contribute to a Th1/
Th2/Th17 cytokine imbalance, disrupting immune ho-
meostasis and triggering excessive inflammation, which
can lead to symptoms of CSU.

Microbiome dysbiosis and its potential link to im-
mune system dysregulation in CSU

One of the key mechanisms by which the gut micro-
biome influences CSU is through the regulation of SC-
FAs, particularly butyrate [28], which plays a vital role
in promoting Treg cell differentiation and suppressing
inflammation. CSU patients exhibit reduced levels of
butyrate-producing bacteria, such as Subdoligranulum
and Ruminococcus bromii, resulting in impaired Treg
cell function [30]. Additionally, CSU patients exhibit al-
terations in unsaturated fatty acids, such as docosahexae-
noic acid and arachidonic acid [29], which are crucial for
immune balance.

The metabolomic profile of CSU patients further sup-
ports the connection between gut microbiota and disease
severity. Studies reveal that changes in serum metabolites
related to butanoate metabolism and immune modula-
tion correlate with microbiome dysbiosis. Metabolomics
research has highlighted significant differences in bu-
tanoate metabolism between individuals with CSU and
those without the condition. Butyrate plays a crucial role
in maintaining intestinal epithelial integrity and contrib-
utes to immune tolerance within the gut [31]. Research
has shown that children with asthma tend to have lower
butyrate levels, which appear to be inversely linked to
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Table 1. Non-immunological receptors activating immune cells in CSU
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Receptor Type Activation Mechanism Key Ligands Impacted Cells Ref.
Activated by polybasic agents
G protein-coupled (Poly-L-lysine, 48/80), neuro- Mast cells and
MRGPRX2 receptor (GPCR) peptides, and CST released after SP, VIP, CST, MBP, and EPO eosinophils [18-20]
anti-IgE activation
Neuropentide Activated by neuropeptides that
NK1R, NK2R pep trigger mast cell degranulation SP and neurokinins Mast cells [18]
receptors .
and cytokine release
Involved in neurogenic inflam- Mast cells and
CGRPR GPCR Receptor mation, responding to sensory CGRP [18]
. . sensory neurons
neuron-derived peptides
TrkA, TrkB, TrkC Neurotrophin Activated by NGFs, c.ont.rlbutmg Neurotrophins (NGF and BDNF) Mast cells and (18]
receptors to mast cell activation sensory neurons
Cleaved by serine proteases, like Mast cells, plate-
PARs (PAR-1, PAR- GPCRs trypsin, tryptase, and coagula- Trypsin, tryptase, and coagulation lets, endothelial 21]

2, PAR-3, PAR-4)

G protein-coupled

tion factors, triggering cellular
activation

Activated by CRH, influencing

factors

cells, and neurons

CRH type | stress response and immune

receptor (GPCR) modulation

CRH, and urocortins (UCN1, nzliitncsegsr;d (23]
UCN2, and UCN3) . !
immune cells

serum IgE concentrations [32]. Reduced butyrate pro-
duction may disrupt the intestinal epithelial barrier, po-
tentially influencing allergen absorption and immune
responses related to allergic asthma. Recent research
indicates a decline in serum glutamate and succinic acid
levels, both of which are essential for butanoate me-
tabolism [29]. At the same time, a noticeable reduction
in beneficial gut bacteria, such as Bifidobacterium and
Faecalibacterium, suggests a broader microbial imbal-
ance that may influence overall health. Meanwhile, a rise
in unidentified Enterobacteriaceae correlates negatively
with glutamate levels.

Role of gut microbiota in CSU treatment

Certain bacterial strains, such as Lachnospira, have
been identified as potential biomarkers for predicting
the efficacy of antihistamine treatments in CSU [33].
Patients with lower levels of Lachnospira tend to have
poorer responses to conventional antihistamine therapy,
highlighting the potential of microbiome-targeted inter-
ventions as therapeutic strategies.

Given this growing evidence, modulating the gut mi-
crobiome through probiotics, prebiotics, and dietary in-
terventions may offer new avenues for CSU treatment.
Some clinical studies have demonstrated that probiotic
supplementation, including strains, such as Bifidobacte-
rium breve and Lactobacillus salivarius, can help reduce
inflammation and improve CSU symptoms [34]. On the
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other hand, the combination of probiotics and antihista-
mines shows no significant difference in efficacy com-
pared to antihistamines alone; however, some patients
experienced lower CSU severity, reduced itching, and
fewer hives [34, 35].

Further research with larger cohorts is necessary to
validate these findings and optimize microbiome-based
therapies. Understanding the intricate relationship be-
tween gut microbiota and CSU pathogenesis may pave
the way for personalized treatments that enhance symp-
tom management and patient quality of life (Table 2).

Neuroimmune Interactions in CSU

Mast cells can become activated independently of
FceRlIs by other biological factors, such as neuropeptides.
Neuropeptides are small protein molecules produced and
released by neurons, and can act as neurotransmitters or
neuromodulators in the nervous system. They also inter-
act with mast cells and induce their degranulation by dif-
ferent types of neuropeptides, especially SP, CGRP, and
neuropeptide Y (NPY), which are secreted by free nerve
endings in response to a range of chemical and physical
triggers. These molecules play a crucial role in signal-
ing pathways related to pain, inflammation, and neural
communication. A possible relationship between SP and
chronic urticaria has been reported [37]. The variation
in this substance’s serum levels remains a topic of de-
bate, as evidence regarding whether they rise or fall is

Shahabi H. CSU and the Immune-Microbiome-neuro Axis. Immunoregulation. 2024; 7:E12.



http://immunoreg.shahed.ac.ir/

2024. Vol 7

Table 2. Gut microbiota alterations and their influence on immune balance
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Bacteria Role in Gut & Immune Function Impact on CSU Ref.
F. prausnitzii Anti-inflammatory; produces SCFAs, particularly Reduced levels in csp, linking to inflam- (25, 27]
butyrate mation
Bacteroidetes Supports microbial diversity & immune balance Reduced levels cause gut dysbiosis [25, 27]
Firmicutes Helps produce SCF,Abs;::rstrengthens the gut Reduced levels impair intestinal integrity [25, 27]
Lactobacillus Regulates immune respoqses and reduces inflam- Reduced Ievgls linked to an immune (25, 27]
mation imbalance
Roseburia hominis Producer of SCFAs-(espemaIIy butyrate), maintain- Reduced levels in CSU, worsening (28]
ing gut health symptoms
Ruminococcaceae (unidentified Regulates immune responses and supports SCFA Reduced levels in CSU, increasing inflam- 29]
strain) metabolism mation
Subdoligranulum A butyrate producer essential for Treg function Low levels disrupt immune tolerance [30]
" s . . Reduced levels in CSU, affecting i
R. bromii Aids in fiber digestion and supports gut immunity educedevels in ‘a ecting Immune [30]
modulation
B. breve Serving as a probiotic strain that improves gut Supplementation may reduce CSU (34]
health symptoms
L. salivarius Supports the gut barrier and immune modulation Helps alleviate CSU-related inflammation [34]
Lachnospira Potential biomarker for antihistamine efficacy Lower levels linked to poor drug response [36]
Enterobacteriaceae An opportunistic pathoge.n that promotes inflam- Increased levels |r\ CSU, worsening im- (27]
mation mune imbalance
Proteobacteria Associated with gut dysbiosis and inflammation Elevated levels in CSU, I'|nk|ng toimmune [25, 27]
dysfunction
K. pneumoniae Disrupts intestinal integrity, increases LPS levels Higher abundance in CSU patients [28]
Bl ) ; .
Unidentified Enterobacteriaceae Negatively correlates with beneficial metabolites evated in CSU and worsens microbiome [27]

dysbiosis

inconclusive. One important receptor for SPs is NKR1
(neurokinin receptor 1), which is mainly expressed in
the skin and the central nervous system [38]. Another
vital receptor for this substance is the G protein-coupled
receptor X2 (MRGPRX2) on mast cells, which likely
causes mast cell degranulation. This receptor in humans
is triggered by cationic ligands, which encompass a wide
variety of compounds, including antimicrobial host de-
fense peptides, neuropeptides, and eosinophil granule
proteins that have been reported to be upregulated in pa-
tients with severe CSU [39]. Some data indicate a rise
in SP serum levels in CSU patients compared to healthy
controls, further highlighting the potential role of SP-
MRGPRX2-MC pathway in the development and pro-
gression of CSU [37, 40-42]. However, Boyvadoglu et
al. [43] reported a decrease in SP levels in CSU patients
compared to healthy controls. Further research must be
performed to elucidate the precise role of this substance
in the pathogenesis of CSU.

NPY is another neuropeptide that plays a key role in
triggering itch and stimulates mast cell activity, enhanc-
ing processes, such as cell adhesion, directional move-
ment (chemotaxis), engulfing of particles (phagocy-
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tosis), lymphocyte function, antibody generation, and
cytokine release. Typically, NPY is secreted by neurons
when they experience stress, and research indicates that
lower levels of NPY in the blood tend to correspond
with more intense itch sensations [44]. Although there
are only a few studies concerning the evaluation of this
factor in CSU patients, further research is needed on this
neuropeptide. Boyvadoglu et al. [43] reported a lower
level of NPY in CSU patients compared to healthy con-
trols, and they observed no significant change in its level
after omalizumab treatment. One study reported a de-
crease in the level of this factor after treatment with an-
tihistamines [45]. Moreover, Basak et al. [40] evaluated
serum neuropeptide levels in 57 patients with chronic
urticaria compared to 46 healthy controls and identified
NPY as a key biomarker in predicting the outcome of the
autologous plasma skin test (APST).

CGRP is another important neuropeptide that plays a
key role in neurogenic inflammation, pain modulation,
and vasodilation. Regarding mast cells, CGRP has been
shown to influence their activation and degranulation,
contributing to inflammatory responses. It was found
to significantly enhance the wheal and flare reactions in
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Table 3. Neuropeptides in CSU: Roles, impact, and serum changes after treatment

Neuropeptide Function

Impact on CSU

Serum Changes After Treatment Ref.

A neurotransmitter involved in
SP pain, inflammation, and mast
cell degranulation

Regulates itch, mast cell activ-

Interacting with NKR1 and
MRGPRX2, leading to mast
cell activation

Lower levels in CSU patients

Conflicting findings—some
studies report an increase, while [23, 37, 40-43,
others show no change after 45, 53]
antihistamines or omalizumab

No significant change after omali-

NPY . . . and correlation with severe zumab, but may decrease after [40, 43, 44]
ity, and immune functions o o .
itching antihistamine treatment
A key player in neurogenic Enhancing wheal and flare An increase after antihistamines
CGRP inflammation, vasodilation, and  reactions and contributingto  and omalizumab, possibly due to [43, 45-47, 53]
mast cell activation mast cell degranulation compensatory mechanisms
Triggers mast cell de- . .
N RH
CRH Released in response to stress granulation, worsening CSU o direct studle.s on CRH serum [23]
levels in CSU
symptoms
Begulates sensorY n-erve activ- Elevated NGF levels are linked ~ No direct studies on NGF serum
NGF ity and neurogenic inflamma- I ) s . [18, 50]
tion to itching and pain sensitivity levels in CSU

individuals with CSU when injected intradermally [46].
Previous studies have highlighted increased expression
of CGRP in the lesional skin of CSU patients compared
to non-lesional skin [47]. Interestingly, findings have re-
ported increased serum CGRP levels after H1 antihista-
mine and omalizumab treatment [43, 45]. The increase
in CGRP levels after treatment may be counterintuitive;
however, it could be due to the fact that these treatments
do not fully counteract the underlying neuroimmune
mechanisms driving CGRP expression. This further em-
phasizes that CSU is not solely histamine-driven and that
other mediators also play a role (Table 3).

Further studies on neuropeptides can help identify
whether they are viable targets for future treatment.

Stress-induced mast cell activation and its impli-
cations for CSU severity

Growing research indicates that heightened psycho-
logical stress levels can significantly worsen the patho-
genic symptoms of CSU. Furthermore, excessive stress
may not only aggravate existing CSU cases but also con-
tribute to an increased risk of developing the condition.
While research suggests a connection between psycho-
logical strain and CSU symptoms, the underlying bio-
logical mechanisms are not yet fully understood.

The brain-skin connection, involving local neuro-im-
mune endocrine pathways, may play a crucial role in the
development and worsening of stress-related allergic and
inflammatory skin conditions. This theory is supported
by numerous studies examining the impact of stress on
the neuroendocrine and immune systems, particularly in
conditions, such as psoriasis and atopic dermatitis [48,
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49]. Stress-triggered biological responses may play a
key role in worsening and prolonging inflammatory skin
conditions. The body’s stress system relies on a complex
network involving endocrine and neural pathways. En-
docrine pathways include circulating hormones of the
hypothalamic-pituitary-adrenal-adrenal (HPA) axis, and
neural pathways are related to the sympathetic system,
which helps regulate both physical and psychological
responses to stress.

Stress-related neurohormones, like corticotropin-re-
leasing hormone (CRH), arginine-vasopressin, adreno-
corticotropic hormone, glucocorticoids, norepinephrine,
and epinephrine, primarily drive this process. Beyond
these, additional mediators, including nerve growth fac-
tor (NGF) and cytokines, significantly influence neuro-
logical and immune functions. In the skin, sensory nerve
fibers extend and branch toward regions with elevated
NGF levels. This factor regulates sensitivity thresholds
in interactions between mast cells and nerve fibers [18].
Under pathological conditions, heightened reactivity
leads to increased skin sensitivity, amplifying neuro-
genic flare responses, itching, and pain. Studies show
elevated NGF levels in individuals with inflammatory
skin conditions, such as psoriasis [50], reinforcing the
link between stress, immune system imbalance, and
chronic inflammation.

Regarding the association between stress and CSU se-
verity, the skin environment contains numerous nerve
fibers that produce various neuropeptides. These nerve
fibers are near mast cells, facilitating neuroimmune in-
teractions. These nerve fibers can be activated through
stress stimulation and subsequently release numerous
neuropeptides, which are stored within the cytoplasmic
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Figure 1. Schematic overview of the multifactorial pathogenesis of CSU
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Note: The diagram illustrates three major interconnected domains contributing to CSU: Immune Dysregulation, Gut Micro-
biome Imbalance, and Neuroimmune Interactions. Each domain branches into key mechanistic subcategories, including im-
mune and non-immune mast cell triggers, microbial dysbiosis and metabolite imbalance, and neuropeptide-driven inflamma-
tion. Arrows indicate the dynamic interplay between immune cells, microbial metabolites, and neural pathways, highlighting

the complex and overlapping nature of CSU pathophysiology.

vesicles of nociceptive neurons. These molecules travel
antidromically from axon terminals to the site of stimu-
lation [51-53]. Neuropeptides trigger mast cell degranu-
lation, leading to the release of histamine, tryptase, and
NGF, as well as peptidergic C fibers containing proin-
flammatory neuropeptides, like SP and CGRP. The on-
going interaction between mast cells and sensory fibers
amplifies neurogenic inflammation and itching, creating
a cycle that reinforces mast cell activation [S1, 52, 54]. It
has been reported that emotional stress may trigger urti-
carial symptoms through mast cell degranulation via an
IgE-independent pathway involving G-protein-coupled
receptors [18, 55] and CRH receptors type 1. Various
neuropeptides, such as peripheral CRH, SP, and CGRP,

are released from postganglionic sympathetic and senso-
ry neurons in response to stress or inflammatory signals,
thereby initiating these processes [23].

Serum neuropeptides change in CSU patients af-
ter treatment

Although there are not many studies on triggering neu-
ropeptides for CSU treatment, Basak et al. [45] reported
increased CGRP levels and no change in SP levels af-
ter antihistamine treatment. Another study reported the
same result following omalizumab treatment [53]. In a
study performed by Boyvadoglu et al. [43], increased
levels of SP and CGRP were reported. This rise might
be due to compensatory mechanisms or incomplete sup-
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pression of inflammation. Further research is needed to
determine the underlying cause of this increase. Inter-
estingly, SP antagonists have shown an antipruritic ef-
fect on both acute and chronic pruritus in several pruritic
conditions [56]. Moreover, spantide, an SP antagonist,
has been reported as an inhibitor of both immediate and
delayed-type cutaneous hypersensitivity reactions [57].
Studies on NK-1 receptor antagonists are also underper-
forming [58]. However, we could not find any studies
concerning the direct target of neuropeptides in CSU pa-
tients (Table 3).

Conclusion

CSU is a condition driven by a complex mix of immune
system dysfunction, neuroimmune interactions, and gut
microbiome imbalances. While IgE and IgG autoanti-
bodies fuel mast cell activation and histamine release,
research shows that neuropeptides, like SP, CGRP, and
NPY, along with PARs and MRGPRX2, play a signifi-
cant role in symptom progression, especially in response
to stress-related triggers. These pathways create a cycle
of inflammation that makes CSU harder to manage with
traditional approaches.

The gut microbiome also plays a key role in CSU, as
changes in bacterial diversity can affect the body’s abil-
ity to regulate inflammation. Patients with CSU often
experience a decline in beneficial SCFA-producing
bacteria, while opportunistic strains, such as Enterobac-
teriaceae and K. pneumoniae, thrive, thereby exacerbat-
ing immune dysfunction. Restoring gut balance through
the use of probiotics or dietary adjustments may reduce
CSU severity and improve long-term outcomes.

Stress plays an important role in triggering mast cell
activity and neuroimmune responses, thereby amplify-
ing symptoms, such as itching, inflammation, and in-
creased skin sensitivity. When stress hormones flood the
body, they activate nearby nerve fibers, which in turn
stimulate mast cells, perpetuating the cycle of irritation
and discomfort. This explains why CSU flare-ups often
coincide with periods of emotional strain or physical ex-
haustion, reinforcing the deep connection between the
nervous system and skin health.

As scientific research continues to shed light on the
complexities of CSU, treatment strategies must expand
beyond standard antihistamines and biologics to ad-
dress the underlying neuroimmune and inflammatory
pathways that drive the condition. A more holistic, per-
sonalized approach may be the key to long-term symp-
tom management and improving patient outcomes. Ad-

2024. Vol 7

dressing immune dysfunction, gut microbiome health,
and neuroimmune regulation will be key to developing
more personalized therapies. New approaches, such as
SYK inhibitors, microbiome-based interventions, and
neuropeptide-targeting therapies, offer hope for patients
seeking long-term relief from this challenging condition.
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