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Review Paper
Amniotic Fluid as a Potential Source of Extracellular 
Vesicles With Anti-inflammatory and Regenerative 
Properties

Cell therapy, especially with mesenchymal stem cells (MSCs), is a potent treatment for many 
diseases or disorders. Meanwhile, MSCs-based cell-free products, such as extracellular vesicles 
(EVs) have been suggested as an alternative to MSCs. These MSC-EVs have been used in different 
trials to treat various inflammatory-dependent disorders. MSCs, according to their isolated tissue 
source, could present different therapeutic features and their derived EVs. One of the new sources 
for MSC isolation is amniotic fluid (AF). In addition, other than MSCs, new studies have used AF 
as an acceptable source for EV isolation. These isolated EVs from AF (AF-EVs) or AF-derived 
MSCs EVs (AF-MSC-EVs) have been used in different in-vitro and animal studies to treat a 
wide variety of inflammatory-dependent pathological conditions due to their confirmed anti-
inflammatory potentials (through suppressing different pro-inflammatory cytokines). Meanwhile, 
in other conditions requiring repairing properties (e.g. wound healing or myocardial infarction), 
considering their regenerative and angiogenic potentials, these EVs have shown proper therapeutic 
results. Furthermore, other than the in-vitro and animal studies, AF-EVs containing treatment have 
successfully been used in some clinical trials and showed no adverse events among the patients 
and expressed potent anti-inflammatory properties through suppression of two very important 
pro-inflammatory cytokines, namely interleukin 6 and tumor necrosis factor α. Accordingly, AF-
EVs and AF-MSC-EVs could be suitable choices for treatment due to their anti-inflammatory and 
regenerative properties. However, further clinical studies are needed.
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Introduction

ell therapy has been stated as a new thera-
peutic approach using major cell catego-
ries, including stem, progenitor, or primary 
cells. Stem cell therapy, as a pioneer treat-
ment option, has been tested in different 

pathological settings, such as autoimmune, neurologi-
cal, cardiovascular, liver, renal, ophthalmologic, and 
skeletal diseases/disorders [1]. The therapeutic poten-
tials of stem cells in clinics have been suggested due to 
their paracrine secretions which could induce hemato-
poiesis, angiogenesis, and tissue reconstruction through 
the released growth factors, cytokines, chemokines, and 
trophic factors [2-4]. Extracellular vesicles (EVs) are a 
group of lipid bilayer-surrounded vesicles derived from 
different types of cells [5] and could be categorized into 
apoptotic bodies, micro-vesicles, and exosomes [6]. EVs 
have important roles in physiological and pathological 
conditions through cell communications [7] and have 
been used as disease biomarkers, therapeutic agents, 
and vehicles for drug delivery [8]. These communicat-
ing agents carry a wide variety of biomolecules, such 
as messenger ribonucleic acid, micro ribonucleic acid, 
DNA, active lipids, cytokines, and growth factors inside 
them which vary depending on the secreting origin [9]. 
The most studied EVs are from cells, including cancer-
associated fibroblasts, tumor-associated macrophages, 
immunocytes, and mesenchymal stem cells (MSCs) [5]. 
Accordingly, this study reviews the therapeutic poten-
tials of amniotic fluid (AF) MSCs (AF-MSCs) as well 
as their derived EVs in three settings, namely in-vitro, 
animal, and human studies.

MSCs

Among cells secreting EVs with therapeutic proper-
ties, MSCs have been studied more than others. These 
cells are known for their ability to self-renew [10], po-
tential for inflammatory response regulation [11], and 
regenerative properties [12]. MSCs have been used in 
different clinical trials for inflammatory-dependent dis-
eases or disorders, such as rheumatoid arthritis [13], 
osteoarthritis [14], liver cirrhosis [15], heart failure 
[16], COVID-19 [17], psoriasis [18], amyotrophic lat-
eral sclerosis [19], and severe sepsis [20]. Regarding 
the safety of this treatment, a recent systematic review 
and meta-analysis has investigated 55 randomized con-
trolled clinical trials (RCTs) and stated that the MSCs 
therapy is a favorable safe treatment [21].

MSCs-derived EVs

Following acceptable results from randomized con-
trolled trials performed on therapeutic applications 
of MSCs in different inflammatory-dependent patho-
logical conditions, investigations on MSC-derived 
EVs became a field of interest [22]. MSC-derived 
EVs have been used in clinics on different pathologi-
cal conditions, such as COVID-19 [23], sensitive skin 
[24], stages III and IV chronic kidney disease [25], and 
chronic graft-versus-host disease and dry eye disease 
[26]. Also, we have great experiences regarding the 
treatment of COVID-19 [27], chronic cutaneous graft-
versus-host disease [28], systemic sclerosis [29], and 
chemotherapy-induced hair loss [30] with MSC-de-
rived EVs. MSC-EVs, as cell-free products, have been 
suggested as a potent treatment option instead of MSCs 
with at least similar therapeutic potential.

Sources of MSCs and their derived EVs

MSCs can be found in a wide variety of tissues, es-
pecially in niches of perivascular areas. The main 
sources of these cells are two main groups, including 
adult (bone marrow, adipose tissue, peripheral blood, 
and menses blood) and neonatal birth-associated tis-
sues (cord blood, umbilical cord, and placenta) [10, 12, 
31]. Although MSCs might have similar expressions of 
surface antigens and phenotypes, they certainly have 
different potentials [32]. The difference in the function 
of MSCs by the origin also could be implied by the 
immunomodulatory functions of their derived EVs. Ac-
cording to Shin et al., the secretomes of fetal-derived 
MSCs (e.g. placenta and Wharton’s jelly) composition-
ally are more diverse in comparison to adult-derived 
MSCs (adipose and bone marrow). They hypothesized 
that the stronger therapeutic potential of fetal-derived 
MSCs might be due to this difference [33]. Another 
similar study by Jeon et al. investigated characteristics 
of MSCs with different origins (adipose tissue, placen-
ta, and bone marrow). According to their results, pla-
cental-derived MSCs seemed to be more effective for 
clinical applications compared to other sources [32].

AF and MSCs potentials

Human AF harvested (stem) cells (AFSCs) have been 
used in different in-vitro studies, such as heart valve 
leaflets [34, 35], fetal tracheal reconstruction [36], and 
bone grafts [37, 38]. In the in-vivo setting, kidney acute 
tubular necrosis [39], ischemic heart disease [40], and 
hyperoxic lung injury [41] are among the other success-
fully studied pathologies treated by AFSCs. In the early 
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2000s, after the evaluation of the second trimester’s 
AF, this fluid was introduced as a new source of hu-
man MSCs [42-44]. The AF-MSCs have been isolated 
mostly during the amniocentesis which is performed at 
weeks 16-28 of gestation [45, 46]. However, other stud-
ies isolated these cells before [47] and after [48] this pe-
riod. AF has some advantages compared to other sourc-
es of MSCs among them being a less invasive method 
of harvesting has attracted attention [49]. In 2012, 
Moorefield et al. hypothesized that AFSCs might have 
similar immune-modulatory effects compared to MSCs 
due to their high similarity in terms of differentiation 
potential and surface marker expression. After a series 
of experiments, they found the ability of inflammatory 
response suppression in these cells [50]. In an in-vivo 
study, Dionig et al. investigated the therapeutic poten-
tial of in-utero treatment of AF-MSCs for spina bifida. 
According to their results, these stem cells maintained 
partial to complete coverage in the treated animals [51]. 
Moreover, AF-MSCs have been used in an in-vivo mod-
el of peripheral nerve regeneration which showed an in-
crease in myelination and improvement of motor func-
tion [52]. Soler et al. evaluated the potential of AFSCs 
in a rat model of bladder dysfunction of Parkinson’s dis-
ease. They showed that cell therapy with AFSCs could 
ameliorate bladder dysfunction in their studied model 
[53]. Also, another study on the effects of AFSCs on an 
animal model of Parkinson disease showed behavioral 
improvement after the treatment [54]. An in-vivo study 
by Zani et al. evaluated the therapeutic potentials of AF-
SCs in a model of necrotizing enterocolitis. Their results 
showed that AFSCs could improve clinical condition, 
survival rate, and gut function in an animal model of 
necrotizing enterocolitis [55]. These cells have been 
studied for possible applications in regenerative medi-
cine and immune system-dependent diseases due to 
their angiogenic and anti-inflammatory potentials.

Angiogenesis

Angiogenesis has been defined as new micro-capillary 
formation from pre-existing structures. This phenomenon 
could be seen in pathological (e.g. tumor growth and me-
tastasis, psoriasis, corneal neovascularization, and hemo-
philic arthropathy) conditions [56-60] as well as physi-
ological (female reproductive cycle, wound healing, and 
revascularize in ischemic heart tissues) situations [61-63]. 
This phenomenon consists of different steps among the 
most important of which are degradation of the basement 
membrane, endothelial cell activation, migration, prolifer-
ation, and tube formation [64]. The main trigger of angio-
genesis seems to be hypoxia and lack of nutrients which 
cells start to release different factors among the most im-

portant of them is hypoxia-inducible factor 1α (HIF-1α). 
HIF-1 has synergistic correlations with crucial angiogenic 
factors, such as vascular endothelial growth factor and 
placental growth factor [65].

Inflammation

Inflammation is a nonspecific defensive state in tissues 
against infectious or noninfectious (toxic compounds, 
damaged cells, endogenous antigens, and irradiation) 
situations [66, 67] which depending on the onset, di-
vides into acute [68] and chronic [66]. Although acute 
inflammation has been considered a defense mecha-
nism [69] and is a required step in some physiological 
events, such as wound repair [70], it could cause severe 
life-threatening conditions, such as pancreatitis [71] 
and acute respiratory distress syndrome [72]. Chronic 
inflammation, on the other hand, has been a destruc-
tive phenomenon leading to or involving in pathologies 
[66], such as psoriasis [73], rheumatoid arthritis [74], 
ulcerative colitis, Crohn’s disease [75], endometriosis 
[76], and increased risk of infections and malignancies 
[77]. Among the most important mediators of inflam-
mation, some interleukins (IL; for instance IL-1β and 
IL-6), tumor necrosis factor α (TNF-α), and some che-
mokines (e.g. CXCL8) [78, 79] are critical.

Angiogenic and anti-inflammatory potentials of am-
niotic fluid-derived MSCs

Thus far, some studies have investigated the angio-
genic and anti-inflammatory potentials of AF-derived 
MSCs (AF-MSCs). Mirabella et al. have evaluated 
the angiogenic potential of AF-MSCs in in-vivo and 
in-vitro models. The endothelial cells treated with AF-
MSC condition media (ACM), containing their secre-
tomes showed to have cytoprotective effects on endo-
thelial cells. Also, in the migration assay, endothelial 
cells treated with ACM showed better results compared 
to condition media of human umbilical cord-derived 
fibroblasts. To assess the tube formation, endothelial 
cells in Matrigel were treated with ACM and serum-
free medium which showed a significant increase in 
formed tubes in favor of ACM. In the in-vivo angio-
genesis assay (hind-limb ischemic mouse), higher neo-
arteriogenesis was observed following ACM treatment 
[80]. In another study, investigations showed over-ex-
pression of intercellular adhesion molecule 1 (ICAM-
1) and vascular cell adhesion protein 1 (VCAM-1) in 
AF-MSCs. These adhesion molecules are role players 
in angiogenesis and cell migration [81, 82]. AF-MSCs 
and ACM could modulate immune activation by block-
ing lymphocyte activation [50]. In a study on an animal 
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model of acute hepatic failure, the therapeutic potential 
of AF-MSCs was drawn through the increased levels of 
transforming growth factor β (TGF-β) and VEGF [83]. 
Another in-vivo study on fulminant hepatic failure used 
AF-MSCs overexpressing IL-1 receptor antagonist (IL-
1Ra) as a possible treatment. According to their results, 
the treatment decreased mortality and increased surviv-
al rates as well as prevention of liver failure. Treatment 
with these cells led to a significant decrease in the serum 
IL-6 and TNF-α [84]. In a mice model of colitis, Legaki 
et al. showed that conditioned media of spindle-shaped 
AF-MSCs could decrease TNF-α and increase TGF-β 
at protein levels. Also, at the expression levels, TNF-α 
and IL-1β experienced a decrease in expression. On 
the other hand, an increasing pattern of expression was 
observed for TGF-β and IL-10 [85] as potent anti-in-
flammatory agents [86]. Another suggested pathway for 
the anti-inflammatory potential of AF-MSCs is through 
decreasing IL-6. As it has been shown in a hyperoxia-
induced pulmonary alveolar injury animal model, IL-6 
levels followed a decreasing pattern in the lung tissue 
after AF-MSC treatment [87].

Amniotic fluid-MSCs-derived EVs 

As mentioned previously, MSCs-derived EVs of cells 
isolated from different sources, such as placenta [27-
30], umbilical cord [88, 89], bone marrow [90, 91], and 
adipose tissue [92, 93] have been used as a possible 
treatment for different pathological conditions. In preg-
nant women, the levels of microparticles in AF were 41-
fold higher than in their plasma [94] which was a clue 
for future investigations. Thus far, some studies have 
investigated the possible therapeutic potentials of AF-
MSC-EVs. In an in-vivo model of bronchopulmonary 
dysplasia, Bellio et al. demonstrated favorable results 
following the treatment of animals with AF-MSC-EVs 
which among the proved mechanisms of action were in-
hibition of IL-1β expression. Also, they showed the EVs 
derived from AF-MSCs have a network of free radical 
scavenging [95]. Also, Del Rivero et al. showed that AF-
MSC-EVs could affect human T-cells and induce strong 
immunomodulatory effects in an in-vitro model [96]. 
AF-MSCs have been used to treat necrotizing entero-
colitis in vivo [55]. Another study has used the cell-free 
product of AF-MSCs, EVs, in the same condition. This 
specific treatment decreased necrotizing enterocolitis 
occurrence, intestinal injury, and gut inflammation. This 
study found a significant decrease in IL-6 and TNF-α as 
possible pathways for the obtained results [97]. Another 
study investigated the therapeutic potentials of spindle-
shaped AF-MSCs-derived secretomes and exosomes 
in a model to assess inflammatory bowel disease. This 

treatment led to a decrease in LPS-induced inflamma-
tion through suppression of IL-1β, IL-6, and TNF-α 
expression in subepithelial myofibroblasts. Also, the 
expression of IL-10, an anti-inflammatory cytokine sig-
nificantly increased after the treatment [98]. Among the 
regenerative studies, AF-MSC-EVs have been used for 
improving the clinical status in a rodent model of fetal 
lung underdevelopment [99]. As Li et al. demonstrated, 
AF-derived EVs (AF-EVs) were able to induce tube 
formation and migration in human umbilical endothelial 
cells in in-vitro models following oxygen and glucose 
deprivation. Moreover, they found higher expression 
of HIF-1α and VEGF in the cerebral cortex of neonatal 
rodents [100]. Other than the mentioned pathological 
conditions, AF-MSC-EVs/AF-SC-EVs/AF-EVs have 
also been used for the treatment of different pathologi-
cal conditions, such as fetal hypoplastic lungs [101], 
pulmonary hypoplasia [102], ischemia/reperfusion 
condition [103], Alzheimer’s disease [104], myocardial 
infarction [105], wound healing and skin regeneration 
[106, 107], chemotherapy-induced ovarian failure [108, 
109], osteoarthritis [110], osteoporosis [111], Alport 
syndrome [112], and azoospermia [113].

AF-EVs have been used in clinical investigations 
as well. A study demonstrated the use of AF-derived 
nanoparticles containing not only EVs and exosomes 
but also cytokines and growth factors under the manu-
facturer name of Zofin™ (Organicell Regenerative 
Medicine, Inc. in Miami, FL, USA). No serious ad-
verse events were observed among the patients caused 
by this treatment. Following the treatment with Zofin™, 
COVID-19-associated symptoms resolved or at least not 
progressed. Also, pro-inflammatory factors including 
C-reactive protein, IL-6, and TNF-α improved after the 
treatment [114]. This time, another study investigated 
the therapeutic potentials of Zofin™ on three patients di-
agnosed with severe COVID-19 who were hospitalized 
in the intensive care unit. No adverse event related to the 
treatment was observed among the patients and intensive 
care unit clinical status and improvement in their respira-
tory system were observed [115]. Moreover, Zofin™ was 
tested on a patient with long COVID-19 presented with 
respiratory impairment and shortness of breath which 
evaluation of clinical status and imaging modalities 
showed improvement in the symptoms [116]. A sum-
mary of all the mentioned studies is shown in Table 1.

Future studies and concerns

The EVs derived from AF, AFSCs, and AF-MSCs 
could be potent research avenues for future studies on 
inflammatory-dependent diseases/disorders as well as 
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Table 1. Sample of important studies on amniotic fluid-derived stem cells, MSCs, and MSCs-derived EVs

Cell Type Author(s) (Year) Target of Assessing Therapeutic Potential Used Model

Amniotic fluid-derived stem cells

Weber et al. (2012) [35] Fetal heart valve pathologies Animal (sheep)

Peister et al. (2009) [38] Mineral deposition (bone formation) Animal (rat)

Perin et al. (2010) [39] Acute tubular necrosis Animal (mice)

Bollini et al. (2011) [40] Ischemic heart disease Animal (rat)

Chang et al. (2013) [54] Parkinson disease (behavioral improvement) Animal (rat)

Zani et al. (2014) [55] Necrotizing enterocolitis Animal (rat)

Carraro et al. (2008) [41] Hyperoxic lung injury Animal (mice)

Amniotic fluid-derived MSCs

Kunisaki et al. (2006) [36] Fetal tracheal reconstruction Animal (sheep)

Steigman et al. (2009) [37] Bone grafting Animal (rabbit)

Pan et al. (2009) [52] Peripheral nerve regeneration Animal (rat)

Soler et al. (2012) [53] Bladder dysfunction of Parkinson’s disease Animal (rat)

Dionigi et al. (2015) [51] Spina bifida Animal (rat)

Amniotic fluid MSCs-derived EVs 

Bellio et al. (2021) [95] Bronchopulmonary dysplasia Animal (rat)

O’Connell et al. (2021) [97] Necrotizing enterocolitis Animal (mice)

Antounians et al. (2021) [99] Fetal lung underdevelopment Animal (rat)

Li et al. (2022) [100] Hypoxic encephalopathy Animal (mice)

Amniotic fluid stem cell-derived EVs

Xiao et al. (2016) [108] Chemotherapy-induced ovarian failure Animal (mice)

Sedrakyan et al. (2017) [112] Alport syndrome Animal (mice)

Khalaj et al. (2022) [101] Fetal Hypoplastic Lung Animal (rat)

Khalaj et al. (2022) [102] Pulmonary hypoplasia Animal (rat)

Gatti et al. (2020) [104] Oxidative stress in Alzheimer’s disease Animal (mice)

Zavatti et al. (2020) [110] Osteoarthritis Animal (rat)

Costa et al. (2022) [105] Myocardial infarction Animal (mice)

Zhang et al. (2021) [106] Wound healing and skin regeneration Animal (rat)

Wgealla et al. (2022) [107] Wound healing and skin regeneration Animal (mice)

Amniotic fluid MSCs-derived EVs Geng et al. (2022) [109] Premature ovarian failure Animal (mice)

Amniotic fluid-derived EVs

Mobarak et al. (2021) [113] Azoospermia Animal (rat)

Bellio et al. (2021) [114] Mild-to-moderate acute COVID-19 Human

Mitrani et al. (2021) [115] Severe COVID-19 Human

Mitrani et al. (2021) [116] Long COVID-19 Human
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regenerative medicine. As mentioned previously, this 
source (AF) has some advantages, such as easy access 
and being less invasive. However, there could be some 
concerns about them. They have been studied less than 
the other similar cells and EVs. Also, AF is the first hu-
man body fluid that their derived EVs have been used in 
clinical trials and data regarding them is not comparable 
with EVs derived from isolated cells cultured under 
good manufacturing practice. However, considering the 
already discussed advantages and growing evidence on 
this topic, the answers to these questions and concerns 
will be found soon.

Conclusion

Cell therapy (e.g. MSCs) has been introduced as a new 
treatment approach for many diseases/disorders. Despite 
many successes in this field, cell-based cell-free thera-
peutic agents (EVs) have been bolded recently due to 
their potency and safety. MSC-EVs could be obtained 
from different sources the most popular one is culturing 
the cells and then collecting EVs from their conditioned 
media. Other than MSCs, recently, AF has been used 
for the isolation of EVs. The EVs obtained from AF or 
AF-derived cultured cells (MSCs/SCs) have been tested 
in many in-vitro, animal, and human studies for treat-
ing different pathological conditions through their anti-
inflammatory and angiogenic potentials. AF could be an 
acceptable source of both MSCs and EVs for cell-based 
and cell-free treatments; however, further clinical trials 
are still needed.
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