Increased Tumor Necrosis Factor-alpha Expression as an Inflammatory Response Indicator and a Cancer Risk in Polycystic Ovarian Syndrome

Document Type: Original Article

Authors

1 Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

2 Department of Paramedical Science, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin. Iran

3 Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

Background: Polycystic Ovarian Syndrome (PCOS) is a pro-inflammatory condition that supports the development of metabolic aberration and ovarian dysfunction. Chronic inflammation and the increased levels of androgens in this group of patients and their impact on the immune system may increase the risk of developing malignancies, including ovarian cancer. Thus, we interacted ovarian tumor cells with Peripheral Blood Mononuclear Cells (PBMC) to evaluate some of their responses to the tumor microenvironment.
Materials and Methods: PBMC were collected from 25 patients with PCOS and 25 healthy women and isolated by Ficoll density gradient centrifugation. Then, we measured cell proliferation and Tumor Necrosis Factor-alpha (TNF-α) concentration at different time intervals (48 and 72 hours) after co-cultivation of ovarian tumor cell lines (SKOV3, A2780) with PBMC in an indirect contact transwell system.
Results: The proliferative response of executive cells during stimulation with tumor cell lines demonstrated no statistically significant difference between the patients and healthy groups, despite lower mean score in the control group. The proliferation rate after 72 h was significantly higher than that of the 48-h interval (PConclusion: We observed an increased proliferative response of effector cells and TNF-α production in PCOS patients compared to healthy individuals. This suggests a low grade of chronic inflammation that is the immunological feature of the ovary in PCOS patients. However, an increased risk of cancer in patients with PCOS requires further in vitro investigation of other aspects of anti-tumor responses using diverse sample size. Additional, exploring other immune cytokine profiles could be beneficial.

Keywords


Fr DD, Tarlatzis R. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility. 2004; 81(1):19-25. [PMID]
The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility. 2004; 81(1):19-25. [DOI:10.1016/j.fertnstert.2003.10.004]
Tehrani FR, Simbar M, Tohidi M, Hosseinpanah F, Azizi F. The prevalence of polycystic ovary syndrome in a community sample of Iranian population: Iranian PCOS prevalence study. Reproductive Biology and Endocrinology. 2011; 9(1):39. [DOI:10.1186/1477-7827-9-39] [PMID] [PMCID]
Azziz R, Sanchez L, Knochenhauer E, Moran C, Lazenby J, Stephens K, et al. Androgen excess in women: Experience with over 1000 consecutive patients. The Journal of Clinical Endocrinology & Metabolism. 2004; 89(2):453-62. [DOI:10.1210/jc.2003-031122] [PMID]
Fanta M, Cibula D, Vrbíková J. Prevalence of Nonclassic Adrenal Hyperplasia (NCAH) in hyperandrogenic women. Gynecological Endocrinology. 2008; 24(3):154-7. [DOI:10.1080/09513590801911992] [PMID]
González F, Rote NS, Minium J, Kirwan JP. Increased activation of nuclear factor κB triggers inflammation and insulin resistance in polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism. 2006; 91(4):1508-12. [DOI:10.1210/jc.2005-2327] [PMID]
Piotrowski PC, Rzepczynska IJ, Kwintkiewicz J, Duleba AJ. Oxidative stress induces expression of CYP11A, CYP17, star and 3 beta HSD in rat theca-interstitial cells. Journal of the Society for Gynecologic Investigation. 2005; 12(2):319A.
Palomba S, Daolio J, La Sala GB. Oocyte competence in women with polycystic ovary syndrome. Trends in Endocrinology & Metabolism. 2017; 28(3):186-98. [DOI:10.1016/j.tem.2016.11.008] [PMID]
de Jager SC, Kraaijeveld AO, Grauss RW, de Jager W, Liem SS, van der Hoeven BL, et al. CCL3 (MIP-1α) levels are elevated during acute coronary syndromes and show strong prognostic power for future ischemic events. Journal of Molecular and Cellular Cardiology. 2008; 45(3):446-52. [DOI:10.1016/j.yjmcc.2008.06.003] [PMID]
Furtado MV, Rossini APW, Campani RB, Meotti C, Segatto M, Vietta G, et al. Interleukin-18: An independent predictor of cardiovascular events in patients with acute coronary syndrome after 6 months of follow-up. Coronary Artery Disease. 2009; 20(5):327-31. [DOI:10.1097/MCA.0b013e32832e5c73] [PMID]
Zangeneh FZ, Naghizadeh MM, Masoumi M. Polycystic ovary syndrome and circulating inflammatory markers. International Journal of Reproductive Biomedicine. 2017; 15(6):375-82. [DOI:10.29252/ijrm.15.6.375] [PMID] [PMCID]
Zirlik A, Abdullah SM, Gerdes N, MacFarlane L, Schönbeck U, Khera A, et al. Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis: Results from the Dallas heart study. Arteriosclerosis, Thrombosis, and Vascular Biology. 2007; 27(9):2043-9. [DOI:10.1161/ATVBAHA.107.149484] [PMID]
Calogero AE, Nicoletti F, Palumbo MA, Burrello N, Di Mauro M, Lunetta M, et al. Macrophage-derived cytokines in the follicular fluids of women with infertility due to immunological causes. Elevated levels of Interleukin 6 and low levels of granulocyte-macrophage colony-stimulating factor. Cytokine. 1998; 10(10):814-8. [DOI:10.1006/cyto.1998.0363] [PMID]
Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. American Journal of Reproductive Immunology. 2010; 63(6):601-10. [DOI:10.1111/j.1600-0897.2010.00852.x] [PMID]
Vinatier D, Dufour P, Tordjeman Rizzi N, Prolongeau J, Depret Moser S, Monnier J. Immunological aspects of ovarian function: Role of the cytokines. European Journal of Obstetrics & Gynecology and Reproductive Biology. 1995; 63(2):155-68. [DOI:10.1016/0301-2115(95)02227-9]
Ciaraldi TP, Aroda V, Mudaliar SR, Henry RR. Inflammatory cytokines and chemokines, skeletal muscle and polycystic ovary syndrome: Effects of pioglitazone and metformin treatment. Metabolism. 2013; 62(11):1587-96. [DOI:10.1016/j.metabol.2013.07.004] [PMID]
Diamanti Kandarakis E, Alexandraki K, Piperi C, Protogerou A, Katsikis I, Paterakis T, et al. Inflammatory and endothelial markers in women with polycystic ovary syndrome. European Journal of Clinical Investigation. 2006; 36(10):691-7. [DOI:10.1111/j.1365-2362.2006.01712.x] [PMID]
Agacayak E, Tunc SY, Sak S, Basaranoglu S, Yüksel H, Turgut A, et al. Levels of neopterin and other inflammatory markers in obese and non-obese patients with polycystic ovary syndrome. Medical Science Monitor. 2015; 21:2446-55. [DOI:10.12659/MSM.894368] [PMID] [PMCID]
Dehaghani AS, Karimaghaei N, Parsanezhad ME, Malekzadeh M, Mehrazmay M, Erfani N. Anti-nuclear antibodies in patients with polycystic ovary syndrome before and after laparoscopic electrocauterization. Iranian Journal of Medical Sciences. 2013; 38(2 Suppl):187-90. [PMID] [PMCID]
Samsami DA, Razmjoei P, Parsanezhad ME. Serum levels of anti-histone and anti-double-strand DNA antibodies before and after laparoscopic ovarian drilling in women with Polycystic Ovarian Syndrome. The Journal of Obstetrics and Gynecology of India. 2014; 64(1):47-52. [DOI:10.1007/s13224-013-0451-x] [PMID] [PMCID]
Gottschau M, Kjaer SK, Jensen A, Munk C, Mellemkjaer L. Risk of cancer among women with polycystic ovary syndrome: A Danish cohort study. Gynecologic Oncology. 2015; 136(1):99-103. [DOI:10.1016/j.ygyno.2014.11.012] [PMID]
Balkwill F, Mantovani A. Inflammation and cancer: Back to Virchow. The Lancet. 2001; 357(9255):539-45. [DOI:10.1016/S0140-6736(00)04046-0]
Fitzgerald PJ. From demons and evil spirits to cancer genes. Washington, D.C.:American Registry of Pathology; 2000.
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011; 144(5):646-74. [DOI:10.1016/j.cell.2011.02.013] [PMID]
Hennessy BT, Coleman RL, Markman M. Ovarian cancer. The Lancet. 2009; 374(9698):1371-82. [DOI:10.1016/S0140-6736(09)61338-6]
Perwez Hussain S, Harris CC. Inflammation and cancer: An ancient link with novel potentials. International Journal of Cancer. 2007; 121(11):2373-80. [DOI:10.1002/ijc.23173] [PMID]
Dumesic DA, Lobo RA. Cancer risk and PCOS. Steroids. 2013; 78(8):782-5. [DOI:10.1016/j.steroids.2013.04.004] [PMID]
Olsen CM, Green AC, Nagle CM, Jordan SJ, Whiteman DC, Bain CJ, et al. Epithelial ovarian cancer: Testing the ‘androgens hypothesis’. Endocrine-Related Cancer. 2008; 15(4):1061-8. [DOI:10.1677/ERC-08-0075] [PMID]
Schildkraut JM, Schwingl PJ, Bastos E, Evanoff A, Hughes C, Curtin J. Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstetrics & Gynecology. 1996; 88(4-part 1):554-9. [DOI:10.1016/0029-7844(96)00226-8]
Ferrandina G, Ranelletti F, Lauriola L, Fanfani F, Legge F, Mottolese M, et al. Cyclooxygenase-2 (COX-2), Epidermal Growth Factor Receptor (EGFR), and Her-2/neu expression in ovarian cancer. Gynecologic Oncology. 2002; 85(2):305-10. [DOI:10.1006/gyno.2002.6620] [PMID]
Riman T, Dickman PW, Nilsson S, Correia N, Nordlinder H, Magnusson CM, et al. Risk factors for invasive epithelial ovarian cancer: Results from a Swedish case-control study. American Journal of Epidemiology. 2002; 156(4):363-73. [DOI:10.1093/aje/kwf048] [PMID]
Du Bois A, Lück H-J, Meier W, Adams H-P, Mobus V, Costa S, et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. Journal of the National Cancer Institute. 2003; 95(17):1320-9. [DOI:10.1093/jnci/djg036] [PMID]
Friedman GD, Skilling JS, Udaltsova NV, Smith LH. Early symptoms of ovarian cancer: A case–control study without recall bias. Family Practice. 2005; 22(5):548-53. [DOI:10.1093/fampra/cmi044] [PMID]
Havrilesky LJ, Sanders GD, Kulasingam S, Myers ER. Reducing ovarian cancer mortality through screening: Is it possible, and can we afford it? Gynecologic Oncology. 2008; 111(2):179-87. [DOI:10.1016/j.ygyno.2008.07.006] [PMID]
Krag K, Canellos G, Griffiths C, Knapp R, Parker L, Welch W, et al. Predictive factors for long-term survival in patients with advanced ovarian cancer. Gynecologic Oncology. 1989; 34(1):88-93. [DOI:10.1016/0090-8258(89)90114-5]
Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A Gynecologic Oncology Group study. Journal of Clinical Oncology. 2003; 21(17):3194-200. [DOI:10.1200/JCO.2003.02.153] [PMID]
Chittenden B, Fullerton G, Maheshwari A, Bhattacharya S. Polycystic ovary syndrome and the risk of gynaecological cancer: a systematic review. Reproductive Biomedicine Online. 2009; 19(3):398-405. [DOI:10.1016/S1472-6483(10)60175-7]
Lorusso G, Rüegg C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochemistry and Cell Biology. 2008; 130(6):1091-103. [DOI:10.1007/s00418-008-0530-8] [PMID]
Liotta LA, Kohn EC. The microenvironment of the tumour–host interface. Nature. 2001; 411(6835):375-9. [DOI:10.1038/35077241] [PMID]
Gajewski TF, Louahed J, Brichard VG. Gene signature in melanoma associated with clinical activity: A potential clue to unlock cancer immunotherapy. The Cancer Journal. 2010; 16(4):399-403. [DOI:10.1097/PPO.0b013e3181eacbd8] [PMID]
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology. 2013; 14(10):1014-22. [DOI:10.1038/ni.2703] [PMID] [PMCID]
Nowak M, Klink M, Glowacka E, Sulowska Z, Kulig A, Szpakowski M, et al. Production of cytokines during interaction of Peripheral Blood Mononuclear Cells with autologous ovarian cancer cells or benign ovarian tumour cells. Scandinavian Journal of Immunology. 2010; 71(2):91-8. [DOI:10.1111/j.1365-3083.2009.02350.x] [PMID]
Poggi A, Zocchi MR. Mechanisms of tumor escape: role of tumor microenvironment in inducing apoptosis of cytolytic effector cells. Archivum Immunologiae et Therapiae Experimentalis. 2006; 54(5):323-33. [DOI:10.1007/s00005-006-0038-7] [PMID]
Yannelli JR, Tucker JA, Hidalgo G, Perkins S, Kryscio R, Hirschowitz EA. Characteristics of PBMC obtained from leukapheresis products and tumor biopsies of patients with non-small cell lung cancer. Oncology Reports. 2009; 22(6):1459-71. [DOI:10.3892/or_00000588] [PMID]
Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, et al. The inflammatory cytokine Tumor Necrosis Factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research. 2007; 67(2):585-92. [DOI:10.1158/0008-5472.CAN-06-2941] [PMID] [PMCID]
Edwardson DW, Boudreau J, Mapletoft J, Lanner C, Kovala AT, Parissenti AM. Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance. PloS One. 2017; 12(9):e0183662. [DOI:10.1371/journal.pone.0183662] [PMID] [PMCID]
Weichselbaum RRD, Fu YX, Burnette BC. The confluence of radiotherapy and immunotherapy. Frontiers in Oncology. 2012; 2:143. [PMID] [PMCID]
Qin L, Xu W, Li X, Meng W, Hu L, Luo Z, et al. Differential expression profile of immunological cytokines in local ovary in patients with Polycystic Ovarian Syndrome: analysis by flow cytometry. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2016; 197:136-41. [DOI:10.1016/j.ejogrb.2015.12.003] [PMID]
Lai D, Wang F, Chen Y, Wang C, Liu S, Lu B, et al. Human ovarian cancer stem-like cells can be efficiently killed by γδ T lymphocytes. Cancer Immunology, Immunotherapy. 2012; 61(7):979-89. [DOI:10.1007/s00262-011-1166-4] [PMID]
Lu J, Aggarwal R, Kanji S, Das M, Joseph M, Pompili V, et al. Human ovarian tumor cells escape γδ T cell recognition partly by down regulating surface expression of MICA and limiting cell cycle related molecules. PloS One. 2011; 6(9):e23348. [DOI:10.1371/journal.pone.0023348] [PMID] [PMCID]
Shi Y, Fan X, Meng W, Deng H, Zhang N, An Z. Engagement of immune effector cells by trastuzumab induces HER2/ERBB2 downregulation in cancer cells through STAT1 activation. Breast Cancer Research. 2014; 16(2):R33. [DOI:10.1186/bcr3637] [PMID] [PMCID]
Rao TD, Park KJ, Smith-Jones P, Iasonos A, Linkov I, Soslow RA, et al. Novel monoclonal antibodies against the proximal (carboxy-terminal) portions of MUC16. Applied immunohistochemistry & molecular morphology: AIMM/official publication of the Society for Applied Immunohistochemistry. 2010; 18(5):462. [DOI:10.1097/PAI.0b013e3181dbfcd2] [PMID] [PMCID]
Bast RC, Spriggs DR. More than a biomarker: CA125 may contribute to ovarian cancer pathogenesis. Gynecologic Oncology. 2011; 121(3):429-30. [DOI:10.1016/j.ygyno.2011.04.032] [PMID]
Rao TD, Rosales N, Spriggs DR. Dual-fluorescence isogenic high-content screening for MUC16/CA125 selective agents. Molecular Cancer Therapeutics. 2011; 10(10):1939-48. [DOI:10.1158/1535-7163.MCT-11-0228] [PMID] [PMCID]
Burke F, Relf M, Negus R, Balkwill F. A cytokine profile of normal and malignant ovary. Cytokine. 1996; 8(7):578-85. [DOI:10.1006/cyto.1996.0077] [PMID]
Rabinovich A, Medina L, Piura B, Segal S, Huleihel M. Regulation of ovarian carcinoma SKOV-3 cell proliferation and secretion of MMPs by autocrine IL-6. Anticancer Research. 2007; 27(1A):267-72. [PMID]
Tempfer C, Zeisler H, Sliutz G, Haeusler G, Hanzal E, Kainz C. Serum evaluation of Interleukin 6 in ovarian cancer patients. Gynecologic Oncology. 1997; 66(1):27-30. [DOI:10.1006/gyno.1997.4726] [PMID]
Mielczarek-Palacz A, Sikora J, Kondera-Anasz Z, Mickiewicz P, Mickiewicz A. Effect of Th1/Th2 cytokine administration on proinflammatory SKOV-3 cell activation. Archives of Medical Science. 2016; 12(6):1337-47. [DOI:10.5114/aoms.2015.53143] [PMID] [PMCID]