No Alternation in Treg Frequency in Peripheral Blood of Chrmical Vitems With Long-term Mild-moderate Pulmonary Complication

Document Type : Original Article


1 Department of Immunology, School of Medicine, Shahed University, Tehran, Iran.

2 Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.

3 Countess of Chester Hospital, Chester, UK.

4 Noncommuicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.

5 Immunoregulation Research Center, Shahed University, Tehran, Iran.


Background: Regulatory T Cells (Treg) are the subgroups of lymphocytes that control inflammatory responses and regulate homeostasis processes through cellular contact and the secretion of soluble agents. We investigated the frequency of Treg in peripheral blood of sulfur mustard exposed patients with CD4, CD25, CD127, FOXP3, and CD45RA markers, compared with healthy individuals and the correlation between frequency of these cells and long-term pulmonary complications.
Materials and Methods: In total, 12 sulfur mustard exposed patients and 12 healthy volunteers were invited. Clinical inspections of both groups were performed by pulmonary specialists and spyrometric‎ evaluation that pulmonary function test operators conducted. After the isolation of peripheral blood mononuclear cells, the frequency of Treg cells was determined by flowcytometry.
Results: The frequency of Treg cells was not significantly different in those exposed to sulfur mustard. Furthermore, there was no significant correlation between spyrometric parameters and the frequency of these cells.
Conclusion: According to the current study data, there is no difference in the frequency of Treg cells between exposed patients with mild pulmonary complications and healthy volunteers. Thus, further studies are required to understand the role of these cells in the severity of pulmonary complications of these patients.


  1. Emami MH, Talaei M, Panahi Y, Saburi A, Ghanei M. Efficacy of omeprazole on cough, pulmonary function and quality of life of patients with sulfur mustard lung injury: A placebo-control, cross-over clinical trial study. Journal of Research in Medical Sciences. 2014; 19(11):1027-33. [PMID][PMCID]
  2. Borak J, Sidell FR. Agents of chemical warfare: Sulfur mustard. Annals of Emergency Medicine. 1992; 21(3):303-8. [DOI:10.1016/S0196-0644(05)80892-3]
  3. Benschop HP, van der Schans GP, Noort D, Fidder A, Mars-Groenendijk RH, de Jong LP. Verification of exposure to sulfur mustard in two casualties of the Iran-Iraq conflict. Journal of Analytical Toxicology. 1997; 21(4):249-51. [DOI:10.1093/jat/21.4.249][PMID]
  4. Holisaz M, Raigany S, Hafezy R, Bakhshandeh H. The role of chemical warfare agents in inducing peripheral neuropathy. Kowsar Medical Journal. 2003; 8:39-46.
  5. Hassan ZM, Ebtekar M. Modeling for immunosupression by sulfur mustard. International Immunopharmacology. 2001; 1(3):605-10. [DOI:10.1016/S1567-5769(00)00036-9][PMID]
  6. Hefazi M, Attaran D, Mahmoudi M, Balali-Mood M. Late respiratory complications of mustard gas poisoning in Iranian veterans. Inhalation Toxicology. 2005; 17(11):587-92. [DOI:10.1080/08958370591000591][PMID]
  7. Razavi SM, Salamati P, Saghafinia M, Abdollahi M. A review on delayed toxic effects of sulfur mustard in Iranian veterans. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2012; 20(1):51.[DOI:10.1186/2008-2231-20-51][PMID][PMCID]
  8. Khateri S, Ghanei M, Keshavarz S, Soroush M, Haines D. Incidence of lung, eye, and skin lesions as late complications in 34,000 Iranians with wartime exposure to mustard agent. Journal of Occupational and Environmental Medicine. 2003; 45(11):1136-43. [DOI:10.1097/01.jom.0000094993.209d1][PMID]
  9. Ghanei M, Adibi I. Clinical review of mustard lung. Iranian Journal of Medical Sciences. 2007; 32(2):58-65.
  10. Ghassemi-Broumand M, Aslani J, Emadi S-N. Delayed ocular, pulmonary, and cutaneous complications of mustards in patients in the City of Sardasht, Iran. Cutaneous and Ocular Toxicology. 2008; 27(4):295-305. [DOI:10.1080/15569520802327807][PMID]
  11. Hosseini-khalili A, Haines DD, Modirian E, Soroush M, Khateri S, Joshi R, et al. Mustard gas exposure and carcinogenesis of lung. Mutation Research. 2009; 678(1):1-6. [DOI:10.1016/j.mrgentox.2009.05.022][PMID][PMCID]
  12. Hassan ZM, Ebtekar M, Ghanei M, Taghikhani M, Daloii MRN, Ghazanfari T. Immunobiological consequences of sulfur mustard contamination. Iranian Journal of Allergy, Asthma and Immunology. 2006; 5(3):101-8. [PMID]
  13. Imani S, Salimian J, Fu J, Ghanei M, Panahi Y. Th17/Treg-related cytokine imbalance in sulfur mustard exposed and stable Chronic Obstructive Pulmonary (COPD) patients: Correlation with disease activity. Immunopharmacology and Immunotoxicology. 2016; 38(4):270-80. [DOI:10.1080/08923973.2016.1188402][PMID]
  14. Emad A, Emad Y. Levels of cytokine in Bronchoalveolar Lavage (BAL) fluid in patients with pulmonary fibrosis due to sulfur mustard gas inhalation. Journal of Interferon & Cytokine Research. 2007; 27(1):38-43. [DOI:10.1089/jir.2006.0084][PMID]
  15. Ghazanfari T, Kariminia A, Yaraee R, Faghihzadeh S, Ardestani SK, Ebtekar M, et al. Long term impact of sulfur mustard exposure on peripheral blood mononuclear subpopulations-Sardasht-Iran Cohort Study (SICS). International Immunopharmacology. 2013; 17(3):931-5. [DOI:10.1016/j.intimp.2012.12.023][PMID]
  16. Shaker Z, Hassan Z, Sohrabpoor H, Mosaffa N. The immunostatus of T helper and T cytotoxic cells in the patients ten years after exposure to sulfur mustard. Immunopharmacology and Immunotoxicology. 2003; 25(3):423-30. [DOI:10.1081/IPH-120024509][PMID]
  17. Imani S, Salimian J, Bozorgmehr M, Vahedi E, Ghazvini A, Ghanei M, et al. Assessment of Treg/Th17 axis role in immunopathogenesis of chronic injuries of mustard lung disease. Journal of Receptors and Signal Transduction. 2016; 36(5):531-41. [DOI:10.3109/10799893.2016.1141953][PMID]
  18. Yamaguchi T, Wing JB, Sakaguchi S. Two modes of immune suppression by Foxp3+regulatory T cells under inflammatory or non-inflammatory conditions. Seminars in Immunology. 2011; 23(6):424-30. [DOI:10.1016/j.smim.2011.10.002][PMID]
  19. Askenasy N, Kaminitz A, Yarkoni S. Mechanisms of T regulatory cell function. Autoimmunity Reviews. 2008; 7(5):370-5. [DOI:10.1016/j.autrev.2008.03.001][PMID]
  20. Singer BD, King LS, D’Alessio FR. Regulatory T cells as immunotherapy. Frontiers in Immunology. 2014; 5:46. [DOI:10.3389/fimmu.2014.00046][PMID][PMCID]
  21. Santegoets SJ, Dijkgraaf EM, Battaglia A, Beckhove P, Britten CM, Gallimore A, et al. Monitoring regulatory T cells in clinical samples: Consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunology, Immunotherapy. 2015; 64(10):1271-86. [DOI:10.1007/s00262-015-1729-x][PMID][PMCID]
  22. Crapo RO, Hankinson JL, Irvin C, MacIntyre NR, Voter KZ, Wise RA, et al. Graham Standardization of Spirometry, 1994 Update. American Thoracic Society. American Journal of Respiratory and Critical Care Medicine. 1995; 152(3):1107-36.[DOI:10.1164/ajrccm.152.3.7663792][PMID]
  23. Kehe K, Szinicz L. Medical aspects of sulphur mustard poisoning. Toxicology. 2005; 214(3):198-209. [DOI:10.1016/j.tox.2005.06.014][PMID]
  24. Paats MS, Bergen IM, Hoogsteden HC, van der Eerden MM, Hendriks RW. Systemic CD4+ and CD8+T cell cytokine profiles correlate with GOLD stage in stable COPD. European Respiratory Journal. 2012; 40(2):330-7. [DOI:10.1183/09031936.00079611][PMID]
  25. Kalathil SG, Lugade AA, Pradhan V, Miller A, Parameswaran GI, Sethi S, et al. T-regulatory cells and programmed death 1+T cells contribute to effector T-cell dysfunction in patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2014; 190(1):40-50. [DOI:10.1164/rccm.201312-2293OC][PMID][PMCID]