The Potential Effects of Scrophularia Striata Boiss on COVID-19

Document Type : Short communication

Authors

1 Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.

2 Department of Traditional Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.

3 Department of Microbiology and Virology, School of Medicine, Urmia University of Mdicinal Sciences, Urmia, Iran.

4 Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.

5 Department of Human Genetics, Qom Branch, Islamic Azad University, Qom, Iran.

6 Department of Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.

7 Department of Immunology and Allergy, Iranian Academic Center for Education, Culture and Research, Tehran, Iran.

Abstract

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) rapidly spread worldwide. The exact mechanisms involved in the pathogenesis of Coronavirus Disease 2019 (COVID-19) are not fully understood. In addition to classical treatment, herbal medicine may effectively manage COVID-19 symptoms and supportive therapy. Scrophularia striata Boiss is a perennial herbaceous plant with immunomodulatory and anti-inflammatory properties. The extract of S. striata Boiss has revealed immunomodulatory effects on reducing T helper 2 (Th2) cytokines, including IL-4 and IL-5, that may be used to manage allergic diseases and asthma. Scrophularia striata Boiss reduces IL-4, and IL-5 may alleviate allergic diseases and asthma. The ethyl acetate extract of S. striata Boiss inhibits the production of IL-1β, TNF-α, and PGE2. Quercetin inhibits proinflammatory mediators while increasing anti-inflammatory mediators. Ethanolic extract of S. striata can significantly reduce NO production in the isolated mouse peritoneal macrophages. Moreover, S. striata Boiss has 3 essential flavonoids: quercetin, isorhamnetin-3-O-rutinoside, and nepitrin. Of them, quercetin inhibits TNF-α, IL-1β, IL-6, PGE2, COX-2, and NO, whereas increases anti-inflammatory cytokines. Therefore, S. striata Boiss is recommended for clinical trial studies in patients with COVID-19 and other viral diseases.

Keywords


  1. Bahrami M, Kamalinejad M, Latifi SA, Seif F, Dadmehr M. Cytokine storm in COVID‐19 and parthenolide: Preclinical evidence. Phytotherapy Research. 2020; 34(10):2429-30. [DOI:10.1002/ptr.6776][PMID][PMCID]
  2. Seif F, Aazami H, Khoshmirsafa M, Kamali M, Mohsenzadegan M, Pornour M, et al. JAK inhibition as a new treatment strategy for patients with COVID-19. International Archives of Allergy and Immunology. 2020; 181(6):467-75. [DOI:10.1159/000508247][PMID][PMCID]
  3. Roshanravan N, Seif F, Ostadrahimi A, Pouraghaei M, Ghaffari S. Targeting cytokine storm to manage patients with COVID-19: A mini-review. Archives of Medical Research. 2020; 51(7):608-12. [DOI:10.1016/j.arcmed.2020.06.012][PMID][PMCID]
  4. Conti P, Caraffa A, Gallenga C, Ross R, Kritas S, Frydas I, et al. Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: A promising inhibitory strategy. Journal of Biological Regulators and Homeostatic Agents. 2020; 34(6):1971-5. [DOI:10.23812/20-1-E][PMID]
  5. Tamri P. A mini-review on phytochemistry and pharmacological activities of Scrophularia striata. Journal of Herbmed Pharmacology. 2019; 8(2):85-9. [DOI:10.15171/jhp.2019.14]
  6. Azadmehr A, Maliji G, Hajiaghaee R, Shahnazi M, Afaghi A. Inhibition of pro-inflammatory cytokines by ethyl acetate extract of Scrophularia striata. Tropical Journal of Pharmaceutical Research. 2012; 11(6):893-7. [DOI:10.4314/tjpr.v11i6.4]
  7. Azadmehr A, Afshari A, Baradaran B, Hajiaghaee R, Rezazadeh S, Monsef-Esfahani H. Suppression of nitric oxide production in activated murine peritoneal macrophages in vitro and ex vivo by Scrophularia striata ethanolic extract. Journal of Ethnopharmacology. 2009; 124(1):166-9. [DOI:10.1016/j.jep.2009.03.042] [PMID]
  8. Azadmehr A, Hajiaghaee R, Zohal MA, Maliji G. Protective effects of Scrophularia striata in Ovalbumin-induced mice asthma model. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2013; 21(1):1-7. [DOI:10.1186/2008-2231-21-56] [PMID] [PMCID]
  9. Monsef-Esfahani HR, Hajiaghaee R, Shahverdi AR, Khorramizadeh MR, Amini M. Flavonoids, cinnamic acid and phenyl propanoid from aerial parts of Scrophularia striata. Pharmaceutical Biology. 2010; 48(3):333-6. [DOI:10.3109/13880200903133829] [PMID]
  10. Saeedi-Boroujeni A, Mahmoudian-Sani MR. Anti-inflammatory potential of Quercetin in COVID-19 treatment. Journal of Inflammation. 2021; 18(1):3. [DOI:10.1186/s12950-021-00268-6][PMID][PMCID]
  11. Endale M, Park SC, Kim S, Kim SH, Yang Y, Cho JY, et al. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology. 2013; 218(12):1452-67. [DOI:10.1016/j.imbio.2013.04.019][PMID]
  12. Milenković M, Arsenović-Ranin N, Stojić-Vukanić Z, Bufan B, Vučićević D, Jančić I. Quercetin ameliorates experimental autoimmune myocarditis in rats. Journal of Pharmacy and Pharmaceutical Sciences. 2010; 13(3):311-9. [DOI:10.18433/J3VS3S][PMID]