Recombinant Rabies Virus With a Multiple Cloning Site: A Platform Capable of Immunological Alterations

Document Type : Original Article

Authors

1 Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.

2 Viral Vaccines Production Unit, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran.

3 Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.

Abstract

Background: Rabies is fatal encephalitis, i.e., preventable by appropriate vaccination. Reverse genetics has proved promising for manipulating the rabies virus immunological characteristics. The insertion or deletion of a gene from the rabies genome could render specific functions to the rabies virus. 
Materials and Methods: A multiple cloning site including 111 nucleotides long harboring 10 single-cut restriction sites have been designed. The designed fragment was cloned between the G and L genes of the rabies virus genome. The recombinant rabies virus was rescued, and its infectivity was confirmed in the BHK-21 cell line. The recombinant virus propagation was compared with the initial rabies virus strain. Statistical analysis was performed using GraphPad Prism.
Results: The cloning and localization of the multiple cloning site were verified by nucleotide sequencing. The recombinant virus properly propagated and rescued in the BHK-21 cell line. Comparing the recombinant virus with the initial rabies virus has shown that both viruses had similar functionality and propagation rate.
Conclusion: The recombinant virus obtained in the present study could facilitate further cloning experiments. Examples include constructing a marker virus, carrying green fluorescent protein to be used either in rabies immunity assays or tracking the virus infection in relevant tissues.

Keywords


  1. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating the global burden of endemic canine rabies. PLoS Neglected Tropical Diseases. 2015; 9(4):e0003709.[DOI:10.1371/jourpntd.0003709] [PMID] [PMCID]
  2. Ertl HCJ. New rabies vaccines for use in humans. Vaccines. 2019; 7(2):54. [DOI:10.3390/vaccines7020054] [PMID] [PMCID]
  3. WHO/Department of control of neglected tropical diseases. Zero by 30: The global strategic plan to end human deaths from dog-mediated rabies by 2030 [Internet]. 2018 [Updated 2018 August 28]. Available from: https://apps.who.int/rabies/resources/9789241513838/en/index.html
  4. Acharya KP, Acharya N, Phuyal S, Upadhyaya M, Lasee S. One-health approach: A best possible way to control rabies. One Health. 2020; 10:100161. [DOI:10.1016/j.onehlt.2020.100161] [PMID] [PMCID]
  5. Acharya KP, Subedi D, Wilson RT. Rabies control in South Asia requires a One Health approach. One Health. 2021; 12:100215. [DOI:10.1016/j.onehlt.202100215] [PMID] [PMCID]
  6. World Health Organization, Rupprecht, Charles E, Fooks, Anthony R Abela-Ridder, Bernadette. Laboratory techniques in rabies. volume 1, 5th World Health Organization. https://apps.who.int/iris/handle/10665/310836.
  7. Luo J, Zhao J, Tian Q, Mo W, Wang Y, Chen H, et al. A recombinant rabies virus carrying GFP between N and P affects viral transcription in vitro. Virus Genes. 2016; 52(3):379-87.[DOI:10.1007/s11262-016-1313-2] [PMID] [PMCID]
  8. Yang DK, Kim HH, Park YR, Yoo JY, Park Y, Park J, et al. Generation of a recombinant rabies virus expressing green fluorescent protein for a virus neutralization antibody assay. Journal of Veterinary Science. 2021; 22(4):e56. [DOI:10.4142/jvs.2021.22.e56] [PMID] [PMCID]
  9. Banyard AC, Tordo N. Rabies pathogenesis and immunology. Revue Scientifique et Technique. 2018; 37(2):323-30. [DOI:10.20506/rst.37.2.2805] [PMID]
  10. Mebatsion T, Schnell MJ, Cox JH, Finke S, Conzelmann KK. Highly stable expression of a foreign gene from rabies virus vectors. Proceedings of the National Academy of Sciences of the United States of America. 1996; 93(14):7310-4. [DOI:10.1073/pnas.93.14.7310] [PMID] [PMCID]
  11. Scher G, Schnell MJ. Rhabdoviruses as vectors for vaccines and therapeutics. Current Opinion in Virology. 2020; 44:169-[DOI:10.1016/j.coviro.2020.09.003] [PMID] [PMCID]
  12. Osakada F, Callaway EM. Design and generation of recombinant rabies virus vectors. Nature Protocols. 2013; 8(8):1583-601. [DOI:10.1038/nprot.2013.094] [PMID] [PMCID]
  13. Ajorloo M, Bamdad T, Gholami AR, Azadmanesh K. Assessment the efficiency of the constructed minigenome of rabies virus using PV strain as helper virus. Archives of Iranian Medicine. 2016; 19(5):335-41. [PMID]
  14. Zhao F, Ying Zhang Y, Li H, Shi RJ, Han SQ. [CaCl2-heat shock preparation of competent cells of three Pseudomonas strains and related transformation conditions (Chinese)]. Ying Yong Sheng Tai Xue Bao. 2013; 24(3):788-94. [PMID]
  15. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. 2011; 28(10):2731-9. [DOI:10.1093/molbev/msr121] [PMID] [PMCID]
  16. Yin C. Progress in the development of animal rabies vaccines in China. China CDC 2021; 3(39):825-30. [DOI:10.46234/ccdcw2021.204] [PMID] [PMCID]
  17. Du J, Tang Q, Huang Y, Rodney WE, Wang L, Liang G. Development of recombinant rabies viruses vectors with Gaussia luciferase reporter based on Chinese vaccine strain CTN181. Virus Rese 2011; 160(1-2):82-8. [DOI:10.1016/j.virusres.2011.05.018] [PMID] [PMCID]
  18. Conzelmann KK, Schnell M. Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins. Journal of Virology. 1994; 68(2):713-9. [DOI:10.1128/jvi.68.2.713-1994] [PMID] [PMCID]
  19. Du Pont V, Plemper RK, Schnell MJ. Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Current Opinion in Virology. 2019; 35:1-13. [DOI:10.1016/j.coviro.2018.12.009] [PMID] [PMCID]
  20. Keshwara R, Hagen KR, Abreu-Mota T, Papaneri AB, Liu D, Wirblich C, et al. A Recombinant Rabies virus expressing the marburg virus glycoprotein is dependent upon antibody-mediated cellular cytotoxicity for protection against marburg virus disease in a murine model. Journal of Virology. 2019; 93(6):e01865-18. [DOI:10.1128/JVI.01865-18] [PMID] [PMCID]
  21. Liu X, Yang Y, Sun Z, Chen J, Ai J, Dun C, et al. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent chall PLoS One. 2014; 9(2):e87105. [DOI:10.1371/journal.pone.0087105] [PMID] [PMCID]
  22. Faber M, Pulmanausahakul R, Hodawadekar SS, Spitsin S, McGettigan JP, Schnell MJ, et al. Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. Journal of Virology. 2002; 76(7):3374-81. [DOI:10.1128/JVI.76.7.3374-3381.2002] [PMID] [PMCID]
  23. Navid MT, Li Y, Zhou M, Cui M, Fu ZF, Tang L, et al. Comparison of the immunogenicity of two inactivated recombinant rabies viruses overexpressing the glycoprotein. Archives of Virology. 2016; 161(10):2863-70. [DOI:10.1007/s00705-016-2967-8] [PMID]
  24. Huang Y, Tang Q, Nadin-Davis SA, Zhang S, Hooper CD, Ming P, et al. Development of a reverse genetics system for a human rabies virus vaccine strain employed in China. Virus Research. 2010; 149(1):28-35. [DOI:10.1016/j.virusres.2009.12.009] [PMID]
  25. Faber M, Lamirande EW, Roberts A, Rice AB, Koprowski H, Dietzschold B, et al. A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies. The Journal of General Virology. 2005; 86(Pt 5):1435-4[DOI:10.1099/vir.0.80844-0] [PMID] [PMCID]
  26. Faber M, Bette M, Preuss MAR, Pulmanausahakul R, Rehnelt J, Schnell MJ, et al. Overexpression of tumor necrosis factor alpha by a recombinant rabies virus attenuates replication in neurons and prevents lethal infection in mice. Journal of Virolology. 2005; 79(24):15405-16. [DOI:10.1128/JVI.79.24.15405-15416.2005] [PMID] [PMCID]
  27. Pulmanausahakul R, Faber M, Morimoto K, Spitsin S, Weihe E, Hooper DC, et al. Overexpression of cytochrome C by a recombinant rabies virus attenuates pathogenicity and enhances antiviral immunity. Journal of Virolology. 2001; 75(22):10800-7. [DOI:10.1128/JVI.75.22.10800-10807.2001] [PMID] [PMCID]
  28. Faul EJ, Aye PP, Papaneri AB, Pahar B, McGettigan JP, Schiro F, et al. Rabies virus-based vaccines elicit neutralizing antibodies, poly-functional CD8+ T cell, and protect rhesus macaques from AIDS-like disease after SIV(mac251) challenge. Vaccine. 2009; 28(2):299-308. [DOI:10.1016/j.vaccine.2009.10.051] [PMID] [PMCID]
  29. Zhao L, Toriumi H, Kuang Y, Chen H, Fu ZF. The roles of chemokines in rabies virus infection: Overexpression may not always be beneficial. Journal of Virology. 2009; 83(22):11808-18.[DOI:10.1128/JVI.01346-09] [PMID] [PMCID]
  30. Kuang Y, Lackay SN, Zhao L, Fu ZF. Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Research. 2009; 144(1-2):18-26. [DOI:10.1016/j.virusres.2009.03.014] [PMID] [PMCID]
  31. Finke S, Brzozka K, Conzelmann KK. Tracking fluorescence-labeled rabies virus: Enhanced green fluorescent protein-tagged phosphoprotein P supports virus gene expression and formation of infectious particles. Journal of Virology. 2004; 78(22):12333-43. [DOI:10.1128/JVI.78.22.12333-12343.2004] [PMID] [PMCID]