Routine Laboratory Parameters as a Tool for Predicting Death in Patients With COVID-19

Document Type : Original Article

Authors

1 Department of Medical Sciences, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran.

2 Department of Biology, School of Basic Sciences, Shahrekord University, Shahrekord, Iran.

3 Department of Immunology, School of Medical Sciences, Shahed University, Tehran, Iran.

4 Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Arak, Iran.

Abstract

Background: The complexity of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) makes the clinical course of the disease develop rapidly, causing severe and deadly complications. Identifying effective laboratory biomarkers able to predicting patients based on their risk. This study aimed to look for those serobiomarkers in hospitalized patients with Coronavirus Disease 2019 (COVID‐19).
Materials and Methods: In this retrospective observational study, 114 patients with COVID-19,
admitted to Valian hospital in Aligudarz, City, Iran from October to December 2020 were examined. The disease outcome was followed along with the hospital course of every patient at the time of analysis. Laboratory investigations of all patients were monitored at the time of admission. A comparative analysis was done between the survivors (n=73) and non-survivors (n=41). Statistical analysis was conducted using SPSS.
Results: Of the 114 patients, 40.4% (n=41) were non-survivor, and there were significant differences in Hemoglobin (Hb), Hematocrit (Hct), Platelet (PLT), Alkaline Phosphatase (ALP), Total Bilirubin, Fasting Blood Suger (FBS), Total Iron-Binding Capacity (TIBC), Lactate Dehydrogenase (LDH), Blood Urea Nitrogen (BUN), Creatinine (Cr), Albumin (ALB), and C-Reactive Protein (CRP) between survivors and non-survivors.
Conclusion: The laboratory parameters have fundamental roles in poor prognosis and mortality prediction rated among patients with COVID-19 in the first admission. Thus, it is highly recommended to collaborate among hematologists, health managers, and clinical especialists.

Keywords


  1. Onyeaka H, Anumudu CK, Al-Sharify ZT, Egele-Godswill E, Mbaegbu P. COVID-19 pandemic: A review of the global lockdown and its far-reaching effects. Science Progress. 2021; 104(2):368504211019854. [DOI:10.1177/00368504211019854][PMID]
  2. Morens DM, Breman JG, Calisher CH, Doherty PC, Hahn BH, Keusch GT, et al. The origin of COVID-19 and why it matters. The American Journal of Tropical Medicine and Hygiene. 2020; 103(3):955- [DOI:10.4269/ajtmh.20-0849][PMID][PMCID]
  3. Mohan B, Nambiar V. COVID-19: An insight into SARS-CoV-2 pandemic originated at Wuhan City in Hubei Province of China. Journal of Infectious Diseases and Epidemiology. 2020; 6(4):146. [DOI:10.23937/2474-3658/1510146]
  4. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology. 2020; 5(4):536-44. [DOI:10.1038/s41564-020-0695-z][PMID][PMCID]
  5. Alghamdi AA. Impact of the COVID-19 pandemic on the social and educational aspects of Saudi university students’ lives. PLoS One. 2021; 16(4):e0250026. [DOI:10.1371/journal.pone.0250026][PMID][PMCID]
  6. Moradian N, Ochs HD, Sedikies C, Hamblin MR, Camargo CA Jr, Martinez JA, et al. The urgent need for integrated science to fight COVID-19 pandemic and beyond. Journal of Translational Medicine. 2020; 18(1):205. [DOI:10.1186/s12967-020-02364-2][PMID][PMCID]
  7. Tantuoyir MM, Rezaei N. Serological tests for COVID‐19: Potential opportunities. Cell Biology International. 2021; 45(4):740-8. [DOI:10.1002/cbin.11516][PMID][PMCID]
  8. Tsai PH, Lai WY, Lin YY, Luo YH, Lin YT, Chen HK, et al. Clinical manifestation and disease progression in COVID-19 infection. Journal of the Chinese Medical Association: JCMA. 2021; 84(1):3-8. [DOI:10.1097/JCMA.0000000000000463][PMID]
  9. van Eijk LE, Binkhorst M, Bourgonje AR, Offringa AK, Mulder DJ, Bos EM, et al. COVID‐19: Immunopathology, pathophysiological mechanisms, and treatment options. The Journal of Pathology. 2021; 254(4):307-331. [DOI:10.1002/path.5642][PMID][PMCID]
  10. Das B, Bhatia SY, Pal PM. Evaluation of the role of routine laboratory biomarkers in COVID-19 patients: Perspective from a Tertiary Care Hospital in India. Indian Journal of Clinical Biochemistry : IJCB. 2021; 36(4):1-12. [DOI:10.1007/s12291-021-00978-x][PMID][PMCID]
  11. Ragia G, Manolopoulos VG. Assessing COVID-19 susceptibility through analysis of the genetic and epigenetic diversity of ACE2-mediated SARS-CoV-2 entry. Pharmacogenomics. 2020; 21(18):1311-29. [DOI:10.2217/pgs-2020-0092][PMID][PMCID]
  12. Zhang ZL, Hou YL, Li DT, Li FZ. Laboratory findings of COVID-19: A systematic review and meta-analysis. Scandinavian Journal of Clinical and Laboratory Investigation. 2020; 80(6):441-7. [PMID][PMCID]
  13. Zhao Y, Nie HX, Hu K, Wu XJ, Zhang YT, Wang MM, et al. Abnormal immunity of non-survivors with COVID-19: Predictors for mortality. Infectious Diseases of Poverty. 2020; 9(1):1 [DOI:10.1186/s40249-020-00723-1][PMID][PMCID]
  14. Gao Y, Li T, Han M, Li X, Wu D, Xu Y, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. Journal of Medical Virology. 2020; 92(7):791-6. [DOI:10.1002/jmv.25770][PMID][PMCID]
  15. Aloisio E, Chibireva M, Serafini L, Pasqualetti S, Falvella FS, Dolci A, et al. A comprehensive appraisal of laboratory biochemistry tests as major predictors of COVID-19 severity. Archives of Pathology & Laboratory Medicine. 2020; 144(12):1457-64. [DOI:10.5858/arpa.2020-0389-SA][PMID]
  16. Lorente L, Gómez-Bernal F, Martín MM, Navarro-Gonzálvez JA, Argueso M, Perez A, et al. High serum nitrates levels in non-survivor COVID-19 patients. Medicina Intensiva. 2020; S0210-5691(20)30336-3. [DOI:10.1016/j.medin.2020.10.003]
  17. Elkrief A, Desilets A, Papneja N, Cvetkovic L, Groleau C, Lakehal YA, et al. High mortality among hospital-acquired COVID-19 infection in patients with cancer: A multicentre observational cohort study. European Journal of Cancer. 2020; 139:181-7. [DOI:10.1016/j.ejca.2020.08.017][PMID][PMCID]
  18. Asghar K, Abu Bakar M, Akram MJ, Farooq A, Siddique K, Rana IA, et al. Clinical characteristics of COVID-19-infected cancer patients in Pakistan: Differences between survivors and non-survivors. Frontiers in Oncology. 2021; 11:655634. [DOI:10.3389/fonc.2021.655634][PMID][PMCID]
  19. Salinas M, Blasco Á, Santo-Quiles A, Lopez-Garrigos M, Flores E, Leiva-Salinas C. Laboratory parameters in patients with COVID-19 on first emergency admission is different in non-survivors: Albumin and lactate dehydrogenase as risk factors. Journal of Clinical Pathology. 2021; 74(10):673-5. [DOI:10.1136/jclinpath-2020-206865][PMID]
  20. Chaibi S, Boussier J, Hajj WE, Abitbol Y, Taieb S, Horaist C, et al. Liver function test abnormalities are associated with a poorer prognosis in Covid-19 patients: Results of a French cohort. Clinics and Research in Hepatology and Gastroenterology. 2021; 45(5):101556. [DOI:10.1016/j.clinre.2020.10.002][PMID][PMCID]
  21. Sai F, Liu X, Li L, Ye Y, Zhu C, Hang Y, et al. Clinical characteristics and risk factors for mortality in patients with coronavirus disease 2019 in intensive care unit: A single- center, retrospective, observational study in China. Annals of Palliative Medicine. 2021; 10(3):2859-68. [DOI:10.21037/apm-20-1575][PMID]
  22. Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T, Chan-Yeung M, et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. The New England Journal of Medicine. 2003; 348(20):1977-85. [PMID]
  23. Leung C. Risk factors for predicting mortality in elderly patients with COVID-19: A review of clinical data in China. Mechanisms of Ageing and Development. 2020; 188:111255. [DOI:10.1016/j.mad.2020.111255][PMID][PMCID]
  24. Sorouri M, Kasaeian A, Mojtabavi H, Radmard AR, Kolahdoozan S, Anushiravani A, et al. Clinical characteristics, outcomes, and risk factors for mortality in hospitalized patients with COVID-19 and cancer history: A propensity score-matched study. Infectious Agents and Cancer. 2020; 15(1):74. [DOI:10.1186/s13027-020-00339-y][PMID][PMCID]
  25. Drent M, Cobben NA, Henderson RF, Wouters EF, van Dieijen-Visser M. Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. The European Respiratory Journal. 1996; 9(8):1736-42. [DOI:10.1183/09031936.96.09081736][PMID]
  26. Zein J, Lee GL, Tawk MM, Dabaja M, Kinasewitz G. Prognostic Significance of Elevated Serum Lactate Dehydrogenase (LDH) in Patients with Severe Chest Journal. 2004; 126(4):873S. [DOI:10.1378/chest.126.4_MeetingAbstracts.873S]
  27. Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT, Rahmani AH. The biochemical and clinical perspectives of lactate dehydrogenase: An enzyme of active metabolism. Endocrine, Metabolic & Immune Disorders Drug Targets. 2020; 20(6):855-68. [DOI:10.2174/1871530320666191230141110][PMID]
  28. Huang J, Cheng A, Kumar R, Fang Y, Chen G, Zhu Y, Lin S. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbid Journal of Medical Virology. 2020; 92(10):2152-8. [DOI:10.1002/jmv.26003]
  29. Ouyang SM, Zhu HQ, Xie YN, Zou ZS, Zuo HM, Rao YW, et al. Temporal changes in laboratory markers of survivors and non-survivors of adult inpatients with COVID-19. BMC Infectious 2020; 20(1):952. [DOI:10.1186/s12879-020-05678-0][PMID][PMCID]
  30. Jothimani D, Venugopal R, Abedin MF, Kaliamoorthy I, Rela M. COVID-19 and liver. Journal of Hepatology. 2020; 73(5):1231-40. [PMID]
  31. Fan H, Cai J, Tian A, Li Y, Yuan H, Jiang Z, et Comparison of liver biomarkers in 288 COVID-19 patients: A mono-centric study in the early phase of pandemic. Frontiers in Medicine. 2021; 7:584888. [DOI:10.3389/fmed.2020.584888][PMID][PMCID]
  32. Liao FL, Peng DH, Chen W, Hu HN, Tang P, Liu YY, et al. Evaluation of serum hepatic enzyme activities in different COVID‐19 phenotypes. Journal of Medical Virology. 2021; 93(4):2365-73. [DOI:10.1002/jmv.26729][PMID]
  33. Bertolini A, van de Peppel IP, Bodewes FAJA, Moshage H, Fantin A, Farinati F, et al. Abnormal liver function tests in patients with COVID-19: Relevance and potential pathogenesis. Hepatology (Baltimore, Md). 2020; 72(5):1864-72. [DOI:10.1002/hep.31480][PMID][PMCID]
  34. García-Tardón N, Abbes AP, Gerrits A, Slingerland RJ, den Besten G. Laboratory parameters as predictors of mortality in COVID-19 patients on hospital admission. Journal of Laboratory Medicine. 2020; 44(6):357-9. [DOI:10.1515/labmed-2020-0087]
  35. Violi F, Cangemi R, Romiti GF, Ceccarelli G, Oliva A, Alessandri F, et al. Is albumin predictor of mortality in COVID-19? Antioxidants & Redox Signaling. 2021; 35(2):139-42. [DOI:10.1089/ars.2020.8142][PMID]
  36. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Archives of Medical Research. 2020; 51(5):384-7. [DOI:10.1016/j.arcmed.2020.04.019][PMID][PMCID]
  37. Inoue M, Nakashima R, Enomoto M, Koike Y, Zhao X, Yip K, et al. Plasma redox imbalance caused by albumin oxidation promotes lung-predominant NETosis and pulmonary cancer m Nature Communications. 2018; 9(1):5116. [DOI:10.1038/s41467-018-07550-x][PMID][PMCID]
  38. Ouyang L, Gong Y, Zhu Y, Gong J. Association of acute kidney injury with the severity and mortality of SARS-CoV-2 infection: A meta-analysis. The American Journal of Emergency Medicine. 2021; 43:149-57. [DOI:10.1016/j.ajem.2020.08.089][PMID][PMCID]
  39. Li Z, Wu M, Yao J, Guo J, Liao X, Song S, et al. Caution on kidney dysfunctions of COVID-19 patients. 2020; 1-25 [DOI:10.1101/2020.02.08.20021212]
  40. Buonaguro FM, Ascierto PA, Morse GD, Buonaguro L, Puzanov I, Tornesello ML, et al. Covid‐19: Time for a paradigm change. Reviews in Medical Virology. 2020; 30(5):e2134. [DOI:10.1002/rmv.2134][PMID][PMCID]
  41. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney International. 2020; 97(5):829-38. [DOI:10.1016/j.kint.2020.03.005][PMID][PMCID]
  42. Šestan M, Marinović S, Kavazović I, Cekinović Đ, Wueest S, Turk Wensveen T, et al. Virus-induced interferon-γ causes insulin resistance in skeletal muscle and derails glycemic control in obesity. Immunity. 2018; 49(1):164-77. e6. [DOI:10.1016/j.immuni.2018.05.005][PMID]
  43. Okin D, Medzhitov R. The effect of sustained inflammation on hepatic mevalonate pathway results in hyperglycemia. Cell. 2016; 165(2):343-56. [DOI:10.1016/j.cell.2016.02.023][PMID][PMCID]
  44. Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nature Reviews Immunology. 2019; 19(12):734-46. [DOI:10.1038/s41577-019-0213-9][PMID]
  45. Lu G, Wang J. Dynamic changes in routine blood parameters of a severe COVID-19 case. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2020; 508:98-102. [DOI:10.1016/j.cca.2020.04.034][PMID][PMCID]
  46. Mousavi SA, Rad S, Rostami T, Rostami M, Mousavi SA, Mirhoseini SA, et al. Hematologic predictors of mortality in hospitalized patients with COVID-19: A comparative study. Hematology. 2020; 25(1):383-8. [PMID]
  47. Bergamaschi G, Borrelli de Andreis F, Aronico N, Lenti MV, Barteselli C, Merli S, et al. Correction to: Anemia in patients with COVID-19: Pathogenesis and clinical significance. Clinical and Experimental M 2021; 21(2):247. [DOI:10.1007/s10238-020-00679-4][PMCID]
  48. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020; 395(10223):497-506. [DOI:10.1016/S0140-6736(20)30183-5]
  49. Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Annals of Hematology. 2020; 99(6):1205-8. [DOI:10.1007/s00277-020-04019-0][PMID][PMCID]