Evaluation of Biochemical Differences and Immunostimulatory Properties of LPS and Lipid a Extracted From Brucella Strains

Document Type : Original Article

Authors

1 Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran.

2 Immunoregulation Research Center, Shahed University, Tehran, Iran.

3 Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran.

4 Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.

5 School of Chemistry, College of Science, University of Tehran, Tehran, Iran.

Abstract

Background: The intrinsic heterogeneity determination in Brucella Lipopolysaccharide (LPS) is important for explaining its chemical nature and biological behavior. This is significant for practical purposes, since LPS is the most relevant antigen during infection and vaccination. The purpose of the present study was to compare biochemical and immunological differences of LPS and lipid A in three strains of Brucella: B. melitensis (virulent strain), B. melitensis (vaccine strain, Rev1), and B. abortus (vaccine strain, S19).
Materials and Methods: LPSs were extracted from Brucella strains using hot phenol-water method, and lipid A was obtained through mild acid hydrolysis. Glycan, phosphate, KDO, and protein concentration were evaluated in both LPS and lipid A samples. Immunological effects of Brucella LPS and lipid A were investigated measuring mitogenesis, IL-6, and Nitric Oxide (NO) production.
Results: LPS and lipid A of B. melitensis have more glycan, KDO, protein, and phosphate compared with B. abortus. Different species of Brucella LPS and lipid A induced NO production in a time- and dose-dependent manner via J774A.1 cells. One μg/ml LPS extracted from different strains of Brucella can induce maximum NO production. However, lipid A from S19 cannot induce NO and lipid A from B. melitensis induces NO production in higher doses of KDO than its LPS. Maximal production of IL-6 and higher mitogenic index in human lymphocytes was observed by Rev1 LPS.
Conclusion: Regarding the diverse biochemical and immunostimulatory properties of LPS and lipid A, these strains of Brucella can be used potentially for different approaches, such as designing subunit brucellosis vaccines or effective adjuvants. For instance, LPS from B. abortus, as an effective and safe adjuvant due to its less toxicity, and Rev1 LPS, as subunit vaccines in developing anti-Brucella vaccines due to its high immunopotency, have been applied in several studies.

Keywords


Young EJ. An overview of human brucellosis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 1995; 21(2):283-9; quiz 90.
Corbel MJ. Brucellosis: an overview. Emerging Infectious Diseases. 1997; 3(2):213-21. [DOI:10.3201/eid0302.970219] [PMID] [PMCID]
Corbel MJ, WJ. BM. Genus Brucella. In Bergey’s Manual of Systematic Bacteriology . Edited by: Krieg NR, Holt JG. Baltimore: The Williams & Wilkins; 1984.
Cardoso PG, Macedo GC, Azevedo V, Oliveira SC. Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system. Microb Cell Fact. 2006; 5:13. [DOI:10.1186/1475-2859-5-S1-S13] [PMID] [PMCID]
Gorvel JP, Moreno E. Brucella intracellular life: from invasion to intracellular replication. Veterinary Microbiology. 2002; 90(1-4):281-97. [DOI:10.1016/S0378-1135(02)00214-6]
Lapaque N, Moriyon I, Moreno E, Gorvel JP. Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol. 2005; 8(1):60-6. [DOI:10.1016/j.mib.2004.12.003] [PMID]
Cherwonogrodszky JWG, Dubray EM, H. M. Antigens of Brucella . In: Neilsen K, Duncan B, editors. Animal Brucellosis: Boca Raton, Fla: CRC Press; 1990.
Wang X, Quinn PJ. Lipopolysaccharide: Biosynthetic pathway and structure modification. Progress in lipid research. 2010; 49(2):97-107. [DOI:10.1016/j.plipres.2009.06.002] [PMID]
Forestier C, Deleuil F, Lapaque N, Moreno E, Gorvel JP. Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation. Journal of immunology (Baltimore, Md:1950). 2000; 165(9):5202-10. [DOI:10.4049/jimmunol.165.9.5202]
Huang LY, Aliberti J, Leifer CA, Segal DM, Sher A, Golenbock DT, et al. Heat-killed Brucella abortus induces TNF and IL-12p40 by distinct MyD88-dependent pathways: TNF, unlike IL-12p40 secretion, is Toll-like receptor 2 dependent. Journal of immunology (Baltimore, Md : 1950). 2003; 171(3):1441-6. [DOI:10.4049/jimmunol.171.3.1441]
MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annual review of immunology. 1997; 15:323-50. [DOI:10.1146/annurev.immunol.15.1.323] [PMID]
Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. European heart journal. 2012; 33(7):829-37, 37a-37d.
Fang FC. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. The Journal of Clinical Investigation. 1997; 99(12):2818-25. [DOI:10.1172/JCI119473] [PMID] [PMCID]
Daniele Reisser, Nolwenn Gauthier, Alena Pance, Jeannin. J-F, (Ed.) A-u-R. Antitumoral activity of Lipids A studies in animal model and cancer patients. Studies in Natural Products Chemistry. 2003; 28:1-42. [DOI:10.1016/S1572-5995(03)80148-5]
Lopez-Urrutia L, Alonso A, Nieto ML, Bayon Y, Orduna A, Sanchez Crespo M. Lipopolysaccharides of Brucella abortus and Brucella melitensis induce nitric oxide synthesis in rat peritoneal macrophages. Infect Immun. 2000; 68(3):1740-5. [DOI:10.1128/IAI.68.3.1740-1745.2000] [PMID] [PMCID]
Freer E, Rojas N, Weintraub A, Lindberg AA, Moreno E. Heterogeneity of Brucella abortus lipopolysaccharides. Res Microbiol. 1995; 146(7):569-78. [DOI:10.1016/0923-2508(96)80563-8]
Diaz-Aparicio E, Aragon V, Marin C, Alonso B, Font M, Moreno E, et al. Comparative analysis of Brucella serotype A and M and Yersinia enterocolitica O:9 polysaccharides for serological diagnosis of brucellosis in cattle, sheep, and goats. Journal of Clinical Microbiology. 1993; 31(12):3136-41. [PMID] [PMCID]
Moreno E, D. T. Berman, Boettcher. aLA. Biological activities of Brucella abortus lipopolysaccharides. Infect Immun. 1981; 31:362-70. [PMID] [PMCID]
Leong D, Diaz R, Milner K, Rudbach J, Wilson JB. Some structural and biological properties of Brucella endotoxin. Infect Immun. 1970; 1(2):174-82. [PMID] [PMCID]
Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Analytical Biochemistry. 1978; 85(2):595-601. [DOI:10.1016/0003-2697(78)90260-9]
Raff RA, Wheat RW. Carbohydrate composition of the phenol-soluble lipopolysaccharides of Citrobacter freundii. J Bacteriol. 1968; 95(6):2035-43. [PMID] [PMCID]
Ames BN, Elizabeth F. Neufeld VG. Assay of inorganic phosphate, total phosphate and phosphatases. Methods in Enzymology. 8: Academic Press; 1966. p. 115-8.
Tsai CM, Frasch CE. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982; 119(1):115-9. [DOI:10.1016/0003-2697(82)90673-X]
Ouchterlony O, Nilsson. aLA. Immunodiffusion and immunoelectrophoresisn. In D. M. Weir (ed.), Handbook of experimental immunology. ed n, editor. Oxford/ London.: Blackwell Scientific Publications; 1973.
Fairbanks GTL Steck, W. aDFH. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971; 10:2606-24. [DOI:10.1021/bi00789a030] [PMID]
Green LC, Wagner J. Glogowski, PL, Skipper JS. Wishnok, Tannenbaum. aSR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982; 126:131-8. [DOI:10.1016/0003-2697(82)90118-X]
Stuehr DJ, Marletta MA. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. Journal of immunology (Baltimore, Md: 1950). 1987; 139(2):518-25.
Goldstein J, Hoffman T, Frasch C, Lizzio EF, Beining PR, Hochstein D, et al. Lipopolysaccharide (LPS) from Brucella abortus is less toxic than that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B. abortus as a carrier in vaccines. Infect Immun. 1992;60(4):1385-9. [PMID] [PMCID]
Marx A, Ionescu J, Pop A. Immunochemical studies on Brucella abortus lipopolysaccharides. Zentralbl Bakteriol Mikrobiol Hyg A. 1983; 253(4):544-53.
Moreno E. Characteristicas y actividades biologicas del lypopolysacarido de Brucella. Adel Microbiol Enf Infect. 1983; 2:50-65.
Moriyon I, Lopez-Goni I. Structure and properties of the outer membranes of Brucella abortus and Brucella melitensis. Int Microbiol. 1998; 1(1):19-26. [PMID]
Qureshi N, Takayama K, Seydel U, Wang R, R.J. C, al. ae. Structural analysis of lipid A derived from the lipopolysacchride of Brucella abortus. Journal of Endotoxin Research. 1994; 1:137-48. [DOI:10.1177/096805199400100303]
Schromm AB, Brandenburg K, Loppnow H, Moran AP, Koch MH, Rietschel ET, et al. Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur J Biochem. 2000; 267(7):2008-13. [DOI:10.1046/j.1432-1327.2000.01204.x] [PMID]
Bhattacharjee AK, Izadjoo MJ, Zollinger WD, Nikolich MP, Hoover DL. Comparison of protective efficacy of subcutaneous versus intranasal immunization of mice with a Brucella melitensis lipopolysaccharide subunit vaccine. Infect Immun. 2006; 74(10):5820-5. [DOI:10.1128/IAI.00331-06] [PMID] [PMCID]
Kariminia A, Kavoossy G, Khatami S, Zowghi E, Ardestani SK. Study of interleukin-10 and interleukin-12 productions in response to lipopolysaccharides extracted from two different Brucella strains. Comp Immunol Microbiol Infect Dis. 2002; 25(2):85-93. [DOI:10.1016/S0147-9571(01)00029-7]
Jamalan M, Ardestani SK, Zeinali M, Mosaveri N, Mohammad Taheri M. Effectiveness of Brucella abortus lipopolysaccharide as an adjuvant for tuberculin PPD. Biologicals. 2010; 39(1):23-8. [DOI:10.1016/j.biologicals.2010.08.005] [PMID]
Mohammadi M, Kianmehr Z, Kaboudanian Ardestani S, Gharegozlou B. Improved immunogenicity of tetanus toxoid by Brucella abortus S19 LPS adjuvant. Iranian Journal of Immunology. 2014; 11(3):189-99. [PMID]
Kianmehr Z, Kaboudanian Ardestani S, Soleimanjahi H, Fotouhi F, Alamian S, Ahmadian S. Comparison of Biological and Immunological Characterization of Lipopolysaccharides From Brucella abortus RB51 and S19. Jundishapur Journal of Microbiology. 2015; 8(11):e24853. [DOI:10.5812/jjm.24853] [PMID] [PMCID]
Kianmehr Z, Soleimanjahi H, Ardestani SK, Fotouhi F, Abdoli A. Influence of Brucella abortus lipopolysaccharide as an adjuvant on the immunogenicity of HPV-16 L1VLP vaccine in mice. Medical Microbiology and Immunology. 2015; 204(2):205-13. [DOI:10.1007/s00430-014-0356-z] [PMID]
Siadat SD, Vaziri F, Eftekhary M, Karbasian M, Moshiri A, Aghasadeghi MR, et al. Preparation and Evaluation of a New Lipopolysaccharide-based Conjugate as a Vaccine Candidate for Brucellosis. Osong public health and research perspectives. 2015;6(1):9-13. [DOI:10.1016/j.phrp.2014.10.012] [PMID] [PMCID]
Winter AJ, Rowe GE, Duncan JR, Eis MJ, Widom J, Ganem B, et al. Effectiveness of natural and synthetic complexes of porin and O polysaccharide as vaccines against Brucella abortus in mice. Infect Immun. 1988; 56(11):2808-17. [PMID] [PMCID]